Electroactive bacterial biofilms can function as living biomaterials that merge the functionality of living cells with electronic components. However, the development of such advanced living electronics has been challenged by the inability to control the geometry of electroactive biofilms relative to solid-state electrodes. Here, we developed a lithographic strategy to pattern conductive biofilms of by controlling aggregation protein CdrAB expression with a blue light-induced genetic circuit. This controlled deposition enabled biofilm patterning on transparent electrode surfaces, and electrochemical measurements allowed us to both demonstrate tunable conduction dependent on pattern size and quantify the intrinsic conductivity of the living biofilms. The intrinsic biofilm conductivity measurements enabled us to experimentally confirm predictions based on simulations of a recently proposed collision-exchange electron transport mechanism. Overall, we developed a facile technique for controlling electroactive biofilm formation on electrodes, with implications for both studying and harnessing bioelectronics.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acssynbio.2c00024 | DOI Listing |
Appl Environ Microbiol
January 2025
McKetta Department of Chemical Engineering, The University of Texas at Austin, Austin, Texas, USA.
Electroactive organisms contribute to metal cycling, pollutant removal, and other redox-driven environmental processes via extracellular electron transfer (EET). Unfortunately, developing genotype-phenotype relationships for electroactive organisms is challenging because EET is necessarily removed from the cell of origin. Microdroplet emulsions, which encapsulate individual cells in aqueous droplets, have been used to study a variety of extracellular phenotypes but have not been applied to investigate EET.
View Article and Find Full Text PDFACS Sens
December 2024
Department of Chemical Science and Technologies, University of Rome Tor Vergata, Via della Ricerca Scientifica 1, Rome 00133, Italy.
Chemosphere
February 2025
College of Hydrosphere Science, Institute of Aquatic Science and Technology, National Kaohsiung University of Science and Technology, Kaohsiung City, 81157, Taiwan; Department of Marine Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung City, 81157, Taiwan. Electronic address:
Efficient detection of chloramphenicol (CAP) in the environment and food products is crucial for addressing global health and environmental safety concerns. This study presents the development of a cost-effective hybrid electrocatalyst comprising lignocellulosic carbon sheets, graphene oxide, and manganese oxide (LCSs/GO@MnO) for CAP detection using a simple electrochemical sensor fabricated on a glassy carbon electrode (GCE) substrate. The synergistic interaction between LCSs, GO, and MnO enhance the electroactive surface area of GCE, facilitating effective dispersion and electrode modification.
View Article and Find Full Text PDFMicrobiol Spectr
January 2025
Department of Bacteriology, University of Wisconsin-Madison, Madison, Wisconsin, USA.
Understanding the extracellular electron transfer mechanisms of electroactive bacteria could help determine their potential in microbial fuel cells (MFCs) and their microbial syntrophy with redox-active minerals in natural environments. However, the mechanisms of extracellular electron transfer to electrodes by sulfate-reducing bacteria (SRB) remain underexplored. Here, we utilized double-chamber MFCs with carbon cloth electrodes to investigate the extracellular electron transfer mechanisms of Hildenborough (H), a model SRB, under varying lactate and sulfate concentrations using different H mutants.
View Article and Find Full Text PDFNanomicro Lett
November 2024
Center of Excellence for Trace Analysis and Biosensor, Prince of Songkla University, Hat Yai, 90110, Songkhla, Thailand.
Wearable sensing systems have been designed to monitor health conditions in real-time by detecting analytes in human biofluids. Wound diagnosis remains challenging, necessitating suitable materials for high-performance wearable sensors to offer prompt feedback. Existing devices have limitations in measuring pH and the concentration of pH-dependent electroactive species simultaneously, which is crucial for obtaining a comprehensive understanding of wound status and optimizing biosensors.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!