Plasma catalysis is a promising technology for decentralized small-scale ammonia (NH) synthesis under mild conditions using renewable energy, and it shows great potential as an alternative to the conventional Haber-Bosch process. To date, this emerging process still suffers from a low NH yield due to a lack of knowledge in the design of highly efficient catalysts and the in situ plasma-induced reverse reaction (i.e., NH decomposition). Here, we demonstrate that a bespoke design of supported Ni catalysts using mesoporous MCM-41 could enable efficient plasma-catalytic NH production at 35 °C and 1 bar with >5% NH yield at 60 kJ/L. Specifically, the Ni active sites were deliberately deposited on the external surface of MCM-41 to enhance plasma-catalyst interactions and thus NH production. The desorbed NH could then diffuse into the ordered mesopores of MCM-41 to be shielded from decomposition due to the absence of plasma discharge in the mesopores of MCM-41, that is, "shielding protection", thus driving the reaction forward effectively. This promising strategy sheds light on the importance of a rational design of catalysts specifically for improving plasma-catalytic processes.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9284550PMC
http://dx.doi.org/10.1021/jacs.2c01950DOI Listing

Publication Analysis

Top Keywords

catalysts improving
8
improving plasma-catalytic
8
ammonia synthesis
8
mesopores mcm-41
8
shielding protection
4
protection mesoporous
4
catalysts
4
mesoporous catalysts
4
plasma-catalytic ambient
4
ambient ammonia
4

Similar Publications

The transition metal single atoms (SAs)-based catalysts with M-N coordination environment have shown excellent performance in electrocatalytic reduction of CO, and they have received extensive attention in recent years. However, the presence of SAs makes it very difficult to efficiently improve the coordination environment. In this paper, a method of direct high-temperature pyrolysis carbonization of ZIF-8 adsorbed with Ni and Fe ions is reported for the synthesis of Ni SAs and FeN nanoparticles (NPs) supported by the N-doped carbon (NC) hollow nanododecahedras (HNDs) with nanotubes (NTs) on the surface (Ni SAs/FeN NPs@NC-HNDs-NTs).

View Article and Find Full Text PDF

Crown ether functionalization boosts CO electroreduction to ethylene on copper-based MOFs.

Chem Commun (Camb)

January 2025

Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu, Sichuan 610064, P. R. China.

The electroconversion of CO into ethylene (CH) offers a promising solution to environmental and energy challenges. Crown ether (CE) modification significantly enhances the CH selectivity of copper-based MOFs, improving CH faradaic efficiency (FE) in CuBTC, CuBDC, and CuBDC-NH by 3.1, 1.

View Article and Find Full Text PDF

Intrinsic Mechanical Effects on the Activation of Carbon Catalysts.

J Am Chem Soc

January 2025

CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, National Center for Nanoscience and Technology (NCNST), Beijing 100190, China.

The mechanical effects on carbon-based metal-free catalysts (C-MFCs) have rarely been explored, despite the global interest in C-MFCs as substitutes for noble metal catalysts. Stress is ubiquitous, whereas its dedicated study is severely restricted due to its frequent entanglement with other structural variables, such as dopants, defects, and interfaces in catalysis. Herein, we report a proof-of-concept study by establishing a platform to continuously apply strain to a highly oriented pyrolytic graphite (HOPG) lamina, simultaneously collecting electrochemical signals.

View Article and Find Full Text PDF

Environmental Catalysis for NO Reduction by Manipulating the Dynamic Coordination Environment of Active Sites.

Environ Sci Technol

January 2025

Innovation Institute of Carbon Neutrality, International Joint Laboratory of Catalytic Chemistry, State Key Laboratory of Advanced Special Steel, Department of Chemistry, College of Sciences, Shanghai University, Shanghai 200444, China.

Nowadays, it is challenging to achieve SO-tolerant environmental catalysis for NO reduction because of the thermodynamically favorable transformation of reactive sites to inactive sulfate species in the presence of SO. Herein, we achieve enhanced low-temperature SO-tolerant NO reduction by manipulating the dynamic coordination environment of active sites. Engineered by coordination chemistry, SiO-CeO composite oxides with a short-range ordered Ce-O-Si structure were elaborately constructed on a TiO support.

View Article and Find Full Text PDF

Revealing the catalytic oxidation mechanism of CO on α-FeO surfaces: an thermodynamic study.

Phys Chem Chem Phys

January 2025

Institute of Nanomaterials, Faculty of Materials Science, Kim Il Sung University, Ryongnam-Dong, Taesong District, Pyongyang, Democratic People's Republic of Korea.

Significant research efforts have been devoted to improving the efficiency of catalytic carbon monoxide (CO) oxidation over α-FeO-based catalysts, but details of the underlying mechanism are still under debate. Here we apply the thermodynamic method (AITM) within the density functional theory framework to investigate the phase diagram of α-FeO(0001) surfaces with various terminations and the catalytic mechanism of CO oxidation on these surfaces. By extending the conventional AITM to consider the charge state of surface defects, we build the phase diagram of α-FeO(0001) surfaces in relation to the Fermi energy as well as the oxygen chemical potential, which makes it possible to explain the influence of point defects on the surface morphology and to predict the existence of the experimentally observed functional sites such as the ferryl group (FeO) and oxygen vacancies.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!