Rational: Poor indoor air quality has been associated with worse chronic obstructive pulmonary disease (COPD) morbidity. In-home portable air cleaners reduce indoor pollutants and could improve respiratory health. Factors associated with air cleaner adherence among adults with COPD remains unknown.
Methods: In a 6-month trial of former smokers with COPD, participants (n=116) received active or sham portable air cleaners. Air cleaner adherence was measured by electronic monitors. Potential baseline predictors of adherence included individual factors (demographics, socioeconomic status, smoking history, psychological well-being), COPD disease severity, and housing characteristics. Time and season were also considered. Stepwise logistic regression and longitudinal fixed effect analysis were performed to assess independent predictors of adherence.
Results: A total of 109 participants had an objective measure of adherence, and 76.1% used at least 1 air cleaner 80% of the time (defined as adherent). Higher annual household income ≥$35,000 (odds ratio [OR]=4.4, 95% confidence interval [CI], 1.1-18.0) and use of heat pump/electricity (versus gas) for heating (OR=6.1, 95%CI, 1.7-22.4) were associated with higher odds of adherence. Further, poor quality of life (St George's Respiratory Questionnaire, per 10-point increase) and prior year exacerbations were associated with lower odds of adherence (OR=0.65, 95%CI, 0.4-1.0) and (OR=0.26, 95%CI, 0.1-0.9), respectively. Adherence was highest during the first month and lower during winter compared to other seasons.
Conclusion: These findings suggest that cold weather season, use of gas for home heating, and lower annual income negatively impact adherence. Poor quality of life and worse disease control may also decrease adherence. Addressing factors associated with air cleaner adherence should be considered when designing future environmental studies.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9448002 | PMC |
http://dx.doi.org/10.15326/jcopdf.2022.0309 | DOI Listing |
Polymers (Basel)
January 2025
Environmental Sciences Postgraduate Program, Center of Engineering, Federal University of Pelotas, R. Benjamin Constant 989, Pelotas 96010-020, RS, Brazil.
Environmental pollution, stemming from the disposal of contaminants, poses severe threats to ecosystems and human health. The emergence of a new class of pollutants, termed emerging contaminants (ECs), in soil, water, and air has raised global concerns, aligning with the UN 2030 Agenda's Sustainable Development Goals. Aerogels, three-dimensional structures with high porosity and low density, offer promise in addressing this issue.
View Article and Find Full Text PDFEnviron Monit Assess
January 2025
Department of Environmental Sciences, Karakoram International University, Gilgit, Gilgit-Baltistan, Pakistan.
This research marks the inaugural endeavor in Gilgit-Baltistan (GB) to identify the primary sources of household energy and indoor air pollutants (IAPs) during the winter and additionally, to evaluate the health impacts associated with IAPs within specific high-altitude communities in Gilgit-Baltistan, Pakistan. Using the convenience sampling method, 20 households were continuously monitored to assess IAPs based on standards time-weighted average. The study found that 90% of the population relied primarily on animal dung as their main energy source, with wood, agricultural residues, electricity, and gas as other sources.
View Article and Find Full Text PDFWaste Manag
January 2025
School of Mechanical Engineering, Beijing Institute of Technology, Beijing 100081 China.
This study addresses the challenge of reducing "net" toxic pollutant discharge, specifically dibenzo-p-dioxins and dibenzofurans (PCDD/Fs), while minimizing the energy consumption and costs associated with detoxification. Our research focuses on reintroducing fly ash and scrubber sludge (ASR) into a hazardous waste thermal treatment system equipped with gasification-intense low oxygen dilution (GASMILD) and an advanced air pollution control system (APCS). This approach yielded a remarkable PCDD/F removal efficiency exceeding 99.
View Article and Find Full Text PDFEnviron Res
January 2025
Department of Civil, Environmental, & Architectural Engineering, Worcester Polytechnic Institute, Worcester, MA, United States. Electronic address:
The growing impact of climate change and escalating wildfire seasons has led to heightened ambient air pollution, potentially affecting children's sleep health. However, current epidemiological research often relies on outdoor weather data to model the environmental impacts on sleep health, potentially mischaracterizing the actual bedroom environment. To address these challenges, we conducted experiments to investigate the relationships among ambient, indoor, and personal exposure to PM concentrations and obstructive sleep apnea (OSA) in children.
View Article and Find Full Text PDFJ Infect Public Health
January 2025
Dalla Lana School of Public Health, University of Toronto, 155 College St., Toronto, Ontario M5T 3M7, Canada; Department of Civil & Mineral Engineering, 35 St. George St, Toronto, Ontario M5S 1A4, Canada.
Throughout the COVID-19 pandemic, Canadian public health advisors and politicians have shared mixed messages about the utility of portable air filters (PAFs) for mitigating the transmission of airborne infectious diseases. Some public health advisors and decision-makers have also suggested that PAFs are cumbersome or require expert advice. We take this opportunity to review evidence and address myths about PAFs.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!