This article describes a novel concept to optimize manufacturing systems distributively through data-based learning. We propose a game-theoretic (GT) learning set-up that is incorporated with accessible control code of the programmable logic controller (PLC) to accelerate the optimal policies learning procedures, instead of learning everything from scratch. Therefore, we offer to process the accessible and available control code into a GT-based learning framework which is subsequently optimized in a fully distributed manner. To this end, we employ the recently developed framework of state-based potential games (PGs) and prove that under mild conditions PLC-informed (PLCi) learning forms a state-based PG framework. We conduct the experiment on a laboratory scale testbed in numerous production scenarios. The experiment's results highlight the major potential of using the PLCi GT-learning, which is the reduction of energy consumption of the production timescales and improvement of production efficiency while nearly halven the learning times.

Download full-text PDF

Source
http://dx.doi.org/10.1109/TCYB.2022.3179950DOI Listing

Publication Analysis

Top Keywords

learning
8
accessible control
8
control code
8
plc-informed distributed
4
distributed game
4
game theoretic
4
theoretic learning
4
learning energy-optimal
4
production
4
energy-optimal production
4

Similar Publications

Background: Artificial intelligence (AI)-based clinical decision support systems (CDSS) have been developed for several diseases. However, despite the potential to improve the quality of care and thereby positively impact patient-relevant outcomes, the majority of AI-based CDSS have not been adopted in standard care. Possible reasons for this include barriers in the implementation and a nonuser-oriented development approach, resulting in reduced user acceptance.

View Article and Find Full Text PDF

Background: eHealth interventions can favorably impact health outcomes and encourage health-promoting behaviors in children. More insight is needed from the perspective of children and their families regarding eHealth interventions, including features influencing program effectiveness.

Objective: This review aimed to explore families' experiences with family-focused web-based interventions for improving health.

View Article and Find Full Text PDF

Evolution of Artificial Intelligence in Medical Education From 2000 to 2024: Bibliometric Analysis.

Interact J Med Res

January 2025

Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.

Background: Incorporating artificial intelligence (AI) into medical education has gained significant attention for its potential to enhance teaching and learning outcomes. However, it lacks a comprehensive study depicting the academic performance and status of AI in the medical education domain.

Objective: This study aims to analyze the social patterns, productive contributors, knowledge structure, and clusters since the 21st century.

View Article and Find Full Text PDF

Background: Primary intracranial germ cell tumors (iGCTs) are highly malignant brain tumors that predominantly occur in children and adolescents, with an incidence rate ranking third among primary brain tumors in East Asia (8%-15%). Due to their insidious onset and impact on critical functional areas of the brain, these tumors often result in irreversible abnormalities in growth and development, as well as cognitive and motor impairments in affected children. Therefore, early diagnosis through advanced screening techniques is vital for improving patient outcomes and quality of life.

View Article and Find Full Text PDF

Background: Gastrointestinal bleeding (GIB) is a severe and potentially life-threatening complication in patients with acute myocardial infarction (AMI), significantly affecting prognosis during hospitalization. Early identification of high-risk patients is essential to reduce complications, improve outcomes, and guide clinical decision-making.

Objective: This study aimed to develop and validate a machine learning (ML)-based model for predicting in-hospital GIB in patients with AMI, identify key risk factors, and evaluate the clinical applicability of the model for risk stratification and decision support.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!