A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 143

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 143
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 209
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 994
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3134
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 574
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 488
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Intramammary rapamycin administration to calves induces epithelial stem cell self-renewal and latent cell proliferation and milk protein expression. | LitMetric

AI Article Synopsis

  • In a study involving calves, rapamycin was shown to reduce mTOR activity by about 50%, promoting stem cell self-renewal without harming mammary structure or milk protein production.
  • The findings suggest that administering rapamycin could enhance epithelial cell growth and milk production in calves, which may benefit adult cows in the long run.

Article Abstract

Mammary epithelial stem cells differentiate to create the basal and luminal layers of the gland. Inducing the number of differentiating bovine mammary stem cells may provide compensating populations for the milk-producing cells that die during lactation. Inhibition of mTOR activity by rapamycin signals self-renewal of intestinal stem cells, with similar consequences in the mouse mammary gland and in bovine mammary implants maintained in mice. The implementation of these results in farm animals for better mammary development and production was studied in 3-month-old calves. mTOR activity decreased by ~50% in mammary epithelial cells subjected to 3-week rapamycin administration, with no negative consequences on mammary morphology or β-casein expression. Subsequently, stem cell self-renewal was induced, reflected by a higher propagation rate of cultures from rapamycin-treated glands compared to respective controls and higher expression of selected markers. Followed by 4-day estrogen and progesterone administration, rapamycin significantly induced proliferation rate. Higher numbers of basal and luminal PCNA+ cells were detected in small ducts near the elongating sites as compared to large ducts, in which only luminal cells were affected. Rapamycin administration resulted in induction of individual milk protein genes' expression, which was negatively correlated to their endogenous levels. The inductive effect of rapamycin on luminal cell number was confirmed in organoid cultures, but milk protein expression decreased, probably due to lack of oscillation in rapamycin levels. In conclusion, intramammary rapamycin administration is an effective methodology to reduce mTOR activity in bovine mammary epithelial cells and consequently, induce stem cell self-renewal. The latent positive effect of rapamycin on epithelial cell proliferation and its potential to improve milk protein expression in calves may have beneficial implications for mature cows.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9216576PMC
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0269505PLOS

Publication Analysis

Top Keywords

rapamycin administration
16
milk protein
16
stem cell
12
cell self-renewal
12
protein expression
12
mammary epithelial
12
stem cells
12
bovine mammary
12
mtor activity
12
intramammary rapamycin
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!