Ion Specificity of Confined Ion-Water Structuring and Nanoscale Surface Forces in Clays.

J Phys Chem B

Department of Physics, Institute for Soft Matter Synthesis and Metrology, Georgetown University, 37th and O Streets NW, Washington, D.C. 20057, United States.

Published: July 2022

Ion specificity and related Hofmeister effects, which are ubiquitous in aqueous systems, can have spectacular consequences in hydrated clays, where ion-specific nanoscale surface forces can determine large-scale cohesive swelling and shrinkage behaviors of soil and sediments. We have used a semiatomistic computational approach and examined sodium, calcium, and aluminum counterions confined with water between charged surfaces representative of clay materials to show that ion-water structuring in nanoscale confinement is at the origin of surface forces between clay particles which are intrinsically ion-specific. When charged surfaces strongly confine ions and water, the amplitude and oscillations of the net pressure naturally emerge from the interplay of electrostatics and steric effects, which cannot be captured by existing theories. Increasing confinement and surface charge densities promote ion-water structures that increasingly deviate from the ions' bulk hydration shells, being strongly anisotropic, persistent, and self-organizing into optimized, nearly solid-like assemblies where hardly any free water is left. Under these conditions, strongly attractive interactions can prevail between charged surfaces because of the dramatically reduced dielectric screening of water and the highly organized water-ion structures. By unravelling the ion-specific nature of these nanoscale interactions, we provide evidence that ion-specific solvation structures determined by confinement are at the origin of ion specificity in clays and potentially a broader range of confined aqueous systems.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.jpcb.2c01738DOI Listing

Publication Analysis

Top Keywords

ion specificity
12
surface forces
12
charged surfaces
12
ion-water structuring
8
structuring nanoscale
8
nanoscale surface
8
aqueous systems
8
confinement origin
8
specificity confined
4
confined ion-water
4

Similar Publications

Introduction: Breath Volatile organic compounds (VOCs) are promising biomarkers for clinical purposes due to their unique properties. Translation of VOC biomarkers into the clinic depends on identification and validation: a challenge requiring collaboration, well-established protocols, and cross-comparison of data. Previously, we developed a breath collection and analysis method, resulting in 148 breath-borne VOCs identified.

View Article and Find Full Text PDF

Based on the enhanced peroxidase-like activity of carbon dots nanozymes (CDszymes), with a specific oxidation reaction of D-amino acid oxidase catalysing the formation of HO from D-amino acid, an ultrasensitive sensing platform, was constructed for the quantitative detection of D-amino acids in saliva. With the increase of D-amino acids concentration, the blue color of catalytic product gradually deepend, the fluorescence CDszymes gradually quenched, and the temperature gradually increased. Using D-alanine as D-amino acid models, the detection limits of D-alanine in colorimetric/photothermal/fluorescent mode were 0.

View Article and Find Full Text PDF

We show that a small biotin-binding RNA aptamer that folds into a pseudoknot structure acts as a substrate for bacterial RNase P RNA (RPR) with and without the RNase P C5 protein. Cleavage in the single-stranded region in loop 1 was shown to depend on the presence of a RCCA-motif at the 3' end of the substrate. The nucleobase and the 2'hydroxyl at the position immediately 5' of the cleavage site contribute to both cleavage efficiency and site selection, where C at this position induces significant cleavage at an alternative site, one base upstream of the main cleavage site.

View Article and Find Full Text PDF

A significant limitation of imaged capillary electric focusing (icIEF) is the inability to identify and characterize specific species in the electropherogram. This has led to the development of complementary ion-exchange chromatography (IEX)-based methods that are amenable to either fraction collection and subsequent characterization or online IEX coupled to mass spectrometry. To overcome this limitation while maintaining the use of icIEF, novel approaches, including an icIEF separation and fractionation technology (MauriceFlex, ProteinSimple), have been developed.

View Article and Find Full Text PDF

Water is the basic molecule in living beings, and it has a major impact on vital processes. Plants are sessile organisms with a sophisticated regulatory network that regulates how resources are distributed between developmental and adaptation processes. Drought-stressed plants can change their survival strategies to adapt to this unfavorable situation.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!