We report the synthesis of iminosugar ,-glycosides starting from 6-azidoketopyranoses. Their Staudinger-azaWittig-mediated cyclization provided bicyclic ,-acetals, which were stereoselectively opened with AllMgBr to afford β-hydroxyazepanes with a quaternary carbon α to the nitrogen. Their ring contraction via a β-aminoalcohol rearrangement produced the six-membered l-iminosugars with two functional handles at the pseudoanomeric position. Inversion of the free OH at the azepane level furnished the d-iminosugars.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.orglett.2c01560 | DOI Listing |
Eur J Med Chem
January 2025
Department of Organic Chemistry, Faculty of Chemistry, University of Seville, E-41012, Seville, Spain. Electronic address:
Invariant natural killer T (iNKT) cells are a subset of innate T cells displaying powerful immunomodulatory functions. Despite extensive preclinical research on the use of iNKT agonist and antagonist for various diseases, translating these findings into successful clinical applications has proven challenging, leaving no approved treatments to date. Efforts to optimize therapeutic outcomes by developing alternative glycolipids to α-galactosylceramide (α-GalCer or KRN7000), the prototypical iNKT antigen, have shown improved preclinical results.
View Article and Find Full Text PDFEur J Med Chem
January 2025
Beijing National Laboratory for Molecular Science (BNLMS), CAS Key Laboratory of Molecular Recognition and Function, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China; University of Chinese Academy of Sciences, Beijing, 100049, China. Electronic address:
Six C-6 fluorinated d-swainsonine derivatives and their enantiomers have been designed based on initial docking calculations, and synthesized from enantiomeric ribose-derived aldehydes, respectively. Glycosidase inhibition assay of these derivatives with d-swainsonine (1) and l-swainsonine (ent-1) as contrasts found that the C-6 fluorinated d-swainsonine derivatives with C-8 configurations as R (α) showed specific and potent inhibitions of jack bean α-mannosidase (model enzyme of Golgi α-mannosidase II); whereas their enantiomers with C-8 configurations as S (β) were powerful and selective α-l-rhamnosidase inhibitors. Molecular docking calculations found the C-6 fluorinatedd-swainsonine derivatives 21, 24 and 25 with highly coincident binding conformations with d-swainsonine (1) in their interactions with the active site of α-mannosidase (PDB ID: 1HWW).
View Article and Find Full Text PDFCarbohydr Res
November 2024
Chemical Sciences and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology (CSIR-NIIST), Thiruvananthapuram, 695019, Kerala, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India. Electronic address:
ACS Catal
October 2024
Department of Chemistry, Simon Fraser University, Burnaby, British Columbia V5A 1S6, Canada.
Mutations in many members of the set of human lysosomal glycoside hydrolases cause a wide range of lysosomal storage diseases. As a result, much effort has been directed toward identifying pharmacological chaperones of these lysosomal enzymes. The majority of the candidate chaperones are active site-directed competitive iminosugar inhibitors but these have met with limited success.
View Article and Find Full Text PDFAntibiotics (Basel)
August 2024
Laboratory for Cheminformatics, Theory Department, National Institute of Chemistry, Hajdrihova ulica 19, 1000 Ljubljana, Slovenia.
Bacteria are capable of remarkable adaptations to their environment, including undesirable bacterial resistance to antibacterial agents. One of the most serious cases is an infection caused by multidrug-resistant , which has unfortunately also spread outside hospitals. Therefore, the development of new effective antibacterial agents is extremely important to solve the increasing problem of bacterial resistance.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!