Machine Learning for Hypertension Prediction: a Systematic Review.

Curr Hypertens Rep

Department of Epidemiology, School of Public Health, University of São Paulo, São Paulo, SP, Brazil.

Published: November 2022

Purpose Of Review: To provide an overview of the literature regarding the use of machine learning algorithms to predict hypertension. A systematic review was performed to select recent articles on the subject.

Recent Findings: The screening of the articles was conducted using a machine learning algorithm (ASReview). A total of 21 articles published between January 2018 and May 2021 were identified and compared according to variable selection, train-test split, data balancing, outcome definition, final algorithm, and performance metrics. Overall, the articles achieved an area under the ROC curve (AUROC) between 0.766 and 1.00. The algorithms most frequently identified as having the best performance were support vector machines (SVM), extreme gradient boosting (XGBoost), and random forest. Machine learning algorithms are a promising tool to improve preventive clinical decisions and targeted public health policies for hypertension. However, technical factors such as outcome definition, availability of the final code, predictive performance, explainability, and data leakage need to be consistently and critically evaluated.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s11906-022-01212-6DOI Listing

Publication Analysis

Top Keywords

machine learning
16
systematic review
8
learning algorithms
8
outcome definition
8
machine
4
learning hypertension
4
hypertension prediction
4
prediction systematic
4
review purpose
4
purpose review
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!