Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Selective conversion of lignocellulosic biomass-derived chemicals is of critical significance for sustainable fine and commodity chemical industries. Cellulose-derived levoglucosenone (LGO) has a promising potential for producing 5-hydroxymethylfurfural (HMF) with a substantial yield under acid conditions, but the mechanism is unidentified. Herein, we disclose the mechanism of LGO conversion to HMF in the aqueous phase without and with HSO as a catalyst by density functional theory (DFT) calculations for the first time. Results showed that LGO first forms 6,8-dioxabicyclo[3.2.1]-octane-2,4,4-triol (DH) via two sequential hydration reactions occurring at the C═C bond and then the ketone group. The use of HSO as a catalyst significantly reduced the free energy barriers of LGO and DH conversion to HMF, with a free energy barrier of 115 kJ/mol for LGO → HMF compared to that of 91 kJ/mol for DH → HMF, demonstrating that DH is easier for HMF formation.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.jpca.2c03169 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!