Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Dieback and mortality in wildland plant species due to climate change have been on the rise in recent decades, and latent fungal pathogens might play a significant role in these events. During a severe multiyear drought, canopy dieback associated with latent pathogens in the Botryosphaeriaceae () family was observed in stands of a dominant shrub species, big berry manzanita (), across chaparral landscapes in California. These fungi are significant pathogens of woody agricultural species, especially in hosts experiencing stress, and have become a threat to economically important crops worldwide. However, little is known regarding their occurrence, distribution, and impact in wildland systems. We conducted a field survey of 300 shrubs across an elevational gradient to identify species infection as it relates to (i) dieback severity and (ii) landscape variables associated with plant drought stress. Our results show that are widely infecting across the landscape, and there is a significant correlation between elevation and dieback severity. Dieback severity was significantly higher at lower elevations, suggesting that infected shrubs at lower elevations are at greater risk than those at higher elevations. Furthermore, two species, and , were most frequently isolated, with being the most common and, based on haplotype analysis, likely the most recently introduced of the two. Our results confirm the wide distribution of latent fungi in a wild shrubland system and provide valuable insight into areas of greatest risk for future shrub dieback and mortalit. These findings could be particularly useful for informing future wildlands management strategies with regard to introduced latent pathogens.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1094/PHYTO-02-22-0044-R | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!