Understanding equivalent circuits in perovskite solar cells. Insights from drift-diffusion simulation.

Phys Chem Chem Phys

Área de Química Física, Universidad Pablo de Olavide, E-41013, Seville, Spain.

Published: July 2022

Perovskite solar cells (PSCs) have reached impressively high efficiencies in a short period of time; however, the optoelectronic properties of halide perovskites are surprisingly complex owing to the coupled ionic-electronic charge carrier dynamics. Electrical impedance spectroscopy (EIS) is a widely used characterization tool to elucidate the mechanisms and kinetics governing the performance of PSCs, as well as of many other semiconductor devices. In general, equivalent circuits are used to evaluate EIS results. Oftentimes these are justified empirical constructions and the real physical meaning of the elements remains disputed. In this perspective, we use drift-diffusion numerical simulations of typical thin-film, planar PSCs to generate impedance spectra avoiding intrinsic experimental difficulties such as instability and low reproducibility. The ionic and electronic properties of the device, such as ion vacancy density, diffusion coefficients, recombination mechanism, , can be changed individually in the simulations, so their effects can be directly observed. We evaluate the resulting EIS spectra by comparing two commonly used equivalent circuits with series and parallel connections respectively, which result in two signals with significantly different time constants. Both circuits can fit the EIS spectra and by extracting the values of the elements of one of the circuits, the values of the elements of the other circuit can be unequivocally obtained. Consequently, both can be used to analyse the EIS of a PSC. However, the physical meaning of each element in each circuit could differ. EIS can produce a broad range of physical information. We analyse the physical interpretation of the elements of each circuit and how to correlate the elements of one circuit with the elements of the other in order to have a direct picture of the physical processes occurring in the device.

Download full-text PDF

Source
http://dx.doi.org/10.1039/d2cp01338jDOI Listing

Publication Analysis

Top Keywords

equivalent circuits
12
elements circuit
12
perovskite solar
8
solar cells
8
evaluate eis
8
physical meaning
8
eis spectra
8
values elements
8
eis
6
elements
6

Similar Publications

This study addresses the challenges of magnetic circuit coupling and control complexity in active radial magnetic bearings (ARMBs) by systematically investigating the electromagnetic performance of four magnetic pole configurations (NNSS, NSNS, NNNN, and SSSS). Initially, equivalent magnetic circuit modeling and finite element analysis (FEA) were employed to analyze the magnetic circuit coupling phenomena and their effects on the magnetic flux density distribution for each configuration. Subsequently, the air gap flux density and electromagnetic force were quantified under rotor eccentricity caused by unbalanced disturbances, and the dynamic performances of the ARMBs were evaluated for eccentricity along the x-axis and at 45°.

View Article and Find Full Text PDF

A 35 nV/√Hz Analog Front-End Circuit with Adjustable Bandwidth and Gain in UMC 40 nm CMOS for Biopotential Signal Acquisition.

Sensors (Basel)

December 2024

State Key Discipline Laboratory of Wide Bandgap Semiconductor Technology, School of Microelectronics, Xidian University, Xi'an 710071, China.

This paper presents a 35 nV/√Hz analog front-end (AFE) circuitdesigned in the UMC 40 nm CMOS technology for the acquisition of biopotential signal. The proposed AFE consists of a capacitive-coupled instrumentation amplifier (CCIA) and a combination of a programmable gain amplifier (PGA) and a low-pass filter (LPF). The CCIA includes a DC servo loop (DSL) to eliminate electrode DC offset (EDO) and a ripple rejection loop (RRL) with self-zeroing technology to suppress high-frequency ripples caused by the chopper.

View Article and Find Full Text PDF

Permanent magnet synchronous motors (PMSMs) are widely used in a variety of fields such as aviation, aerospace, marine, and industry due to their high angular position accuracy, energy conversion efficiency, and fast response. However, driving errors caused by the non-ideal characteristics of the driver negatively affect motor control accuracy. Compensating for the errors arising from the non-ideal characteristics of the driver demonstrates substantial practical value in enhancing control accuracy, improving dynamic performance, minimizing vibration and noise, optimizing energy efficiency, and bolstering system robustness.

View Article and Find Full Text PDF

The rapid development of wireless power transfer (WPT) technology has provided new avenues for supplying continuous and stable power to capsule robots. In this article, we propose a two-dimensional omnidirectional wireless power transfer (OWPT) system, which enables power to be transmitted effectively in multiple spatial directions. This system features a three-dimensional transmitting structure with a Helmholtz coil and saddle coil pairs, combined with a one-dimensional receiving structure.

View Article and Find Full Text PDF

A Novel ANN-PSO Method for Optimizing a Small-Signal Equivalent Model of a Dual-Field-Plate GaN HEMT.

Micromachines (Basel)

November 2024

Innovation Center for Electronic Design Automation Technology, Hangzhou Dianzi University, Hangzhou 310018, China.

This study introduces a novel method that integrates artificial neural networks (ANNs) with the Particle Swarm Optimization (PSO) algorithm to enhance the efficiency and precision of parameter optimization for the small-signal equivalent model of dual-field-plate GaN HEMT devices. We initially train an ANN model to predict the S-parameters of the device, and subsequently utilize the PSO algorithm for parameter optimization. Comparative analysis with the NSGA2 and DE algorithms, based on convergence speed and accuracy, underscores the superiority of the PSO algorithm.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!