Smart materials are engineered materials that have one or more properties that are introduced in a controlled fashion by surrounding stimuli. Engineering of biomacromolecules like proteins into a smart material call for meticulous artistry. Peptides have grabbed notable attention as a preferred source for smart materials in the medicinal field, promoted by their versatile chemical and biophysical attributes of biocompatibility, and biodegradability. Recent advances in the synthesis of multifunctional peptides have proliferated their application in diverse domains: agriculture, nanotechnology, medicines, biosensors, therapeutics, and soft robotics. Stimuli such as pH, temperature, light, metal ions, and enzymes have vitalized physicochemical properties of peptides by augmented sensitivity, stability, and selectivity. This review elucidates recent (2018-2021) advances in the design and synthesis of smart materials, from stimuli-responsive peptides followed by their biomedical and therapeutic applications.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.molpharmaceut.1c00983 | DOI Listing |
IUCrJ
January 2025
Dynamic Molecular Materials Laboratory, Department of Life Sciences, University of Modena and Reggio Emilia, Modena, 41125, Italy.
Understanding dynamic processes in molecular crystals is becoming crucial for the development of next-generation smart crystalline materials. In this context, Zwolenik & Makal [(2025). IUCrJ, 12, https://doi.
View Article and Find Full Text PDFOrg Biomol Chem
January 2025
State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials Oriented Chemical Engineering, Dalian University of Technology, Dalian 116024, China.
We report the first example of photocatalytic acceptorless dehydrogenation using cationic Eosin Y as a bifunctional photocatalyst, without metal catalysts or HAT reagents. Under Bayesian optimized conditions, a wide range of flavones were synthesized in moderate to excellent yields, many of which were reported with biological activities. Mechanistic studies suggest that flavones likely form through two HAT processes, with hydrogen release occurring photoredox.
View Article and Find Full Text PDFFood Eng Rev
August 2024
Department of Biosystems Engineering, University of Manitoba, E2-376, EITC, 75A Chancellor's Circle, Winnipeg, MB, R3T 2N2 Canada.
Drying is a crucial unit operation within the functional foods and biopharmaceutical industries, acting as a fundamental preservation technique and a mechanism to maintain these products' bioactive components and nutritional values. The heat-sensitive bioactive components, which carry critical quality attributes, necessitate a meticulous selection of drying methods and conditions backed by robust research. In this review, we investigate challenges associated with drying these heat-sensitive materials and examine the impact of various drying methods.
View Article and Find Full Text PDFRSC Adv
January 2025
Department of Chemical & Biological Engineering, Hanbat National University Daejeon 34158 Republic of Korea +82 42 8211530.
This study investigated the impact of aspect ratio and crystal size distribution on the mother liquor content and drying rate of l-glutamic acid (LGA). LGA cooling crystallization was performed using two methods: spontaneous nucleation and seeding. First, to identify various crystalline forms of LGA and obtain α-form seeds, cooling crystallization was carried out through spontaneous nucleation and seeding.
View Article and Find Full Text PDFAdv Mater
January 2025
Hangzhou Institute of Technology, Xidian University, Hangzhou, 311231, P. R. China.
Environmentally induced sensor temperature fluctuations can distort the outputs of a sensor, reducing their stability during long-term health monitoring. Here, a passive isothermal flexible sensor is proposed by using hierarchical cellulose aerogel (HCA) as the top tribonegative layer, which allows the sensor to adapt dynamic thermal environments through both radiative cooling and heat insulation. The radiative cooling effect can cool down the temperatures of a sensor in summer, while the hollow microfibers in HCA provide ultralow thermal conductivity to reduce internal heat loss in winter.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!