Smart materials are engineered materials that have one or more properties that are introduced in a controlled fashion by surrounding stimuli. Engineering of biomacromolecules like proteins into a smart material call for meticulous artistry. Peptides have grabbed notable attention as a preferred source for smart materials in the medicinal field, promoted by their versatile chemical and biophysical attributes of biocompatibility, and biodegradability. Recent advances in the synthesis of multifunctional peptides have proliferated their application in diverse domains: agriculture, nanotechnology, medicines, biosensors, therapeutics, and soft robotics. Stimuli such as pH, temperature, light, metal ions, and enzymes have vitalized physicochemical properties of peptides by augmented sensitivity, stability, and selectivity. This review elucidates recent (2018-2021) advances in the design and synthesis of smart materials, from stimuli-responsive peptides followed by their biomedical and therapeutic applications.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.molpharmaceut.1c00983DOI Listing

Publication Analysis

Top Keywords

smart materials
12
biomedical therapeutic
8
therapeutic applications
8
materials
5
advances peptides-based
4
peptides-based stimuli-responsive
4
stimuli-responsive materials
4
materials biomedical
4
applications review
4
smart
4

Similar Publications

Connecting lattice and molecular vibrations to organic crystal properties.

IUCrJ

January 2025

Dynamic Molecular Materials Laboratory, Department of Life Sciences, University of Modena and Reggio Emilia, Modena, 41125, Italy.

Understanding dynamic processes in molecular crystals is becoming crucial for the development of next-generation smart crystalline materials. In this context, Zwolenik & Makal [(2025). IUCrJ, 12, https://doi.

View Article and Find Full Text PDF

Photocatalytic acceptorless dehydrogenation of flavanones by cationic Eosin Y as a bifunctional catalyst.

Org Biomol Chem

January 2025

State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials Oriented Chemical Engineering, Dalian University of Technology, Dalian 116024, China.

We report the first example of photocatalytic acceptorless dehydrogenation using cationic Eosin Y as a bifunctional photocatalyst, without metal catalysts or HAT reagents. Under Bayesian optimized conditions, a wide range of flavones were synthesized in moderate to excellent yields, many of which were reported with biological activities. Mechanistic studies suggest that flavones likely form through two HAT processes, with hydrogen release occurring photoredox.

View Article and Find Full Text PDF

Advancement and Innovations in Drying of Biopharmaceuticals, Nutraceuticals, and Functional Foods.

Food Eng Rev

August 2024

Department of Biosystems Engineering, University of Manitoba, E2-376, EITC, 75A Chancellor's Circle, Winnipeg, MB, R3T 2N2 Canada.

Drying is a crucial unit operation within the functional foods and biopharmaceutical industries, acting as a fundamental preservation technique and a mechanism to maintain these products' bioactive components and nutritional values. The heat-sensitive bioactive components, which carry critical quality attributes, necessitate a meticulous selection of drying methods and conditions backed by robust research. In this review, we investigate challenges associated with drying these heat-sensitive materials and examine the impact of various drying methods.

View Article and Find Full Text PDF

This study investigated the impact of aspect ratio and crystal size distribution on the mother liquor content and drying rate of l-glutamic acid (LGA). LGA cooling crystallization was performed using two methods: spontaneous nucleation and seeding. First, to identify various crystalline forms of LGA and obtain α-form seeds, cooling crystallization was carried out through spontaneous nucleation and seeding.

View Article and Find Full Text PDF

Environmentally induced sensor temperature fluctuations can distort the outputs of a sensor, reducing their stability during long-term health monitoring. Here, a passive isothermal flexible sensor is proposed by using hierarchical cellulose aerogel (HCA) as the top tribonegative layer, which allows the sensor to adapt dynamic thermal environments through both radiative cooling and heat insulation. The radiative cooling effect can cool down the temperatures of a sensor in summer, while the hollow microfibers in HCA provide ultralow thermal conductivity to reduce internal heat loss in winter.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!