By precisely controlling the waveform of ultrashort laser fields, electronic and nuclear motions in molecules can be steered on extremely short time scales, even in the attosecond regime. This new research field, termed "optochemistry", presents the light field in the time-frequency domain and opens new avenues for tailoring molecular reactions beyond photochemistry. This Perspective summarizes the ultrafast laser techniques employed in recent years for manipulating the molecular reactions based on waveform control of intense ultrashort laser pulses, where the chemical reactions can take place in isolated molecules, clusters, and various nanosystems. The underlying mechanisms for the coherent control of molecular dynamics are explicitly explored. Challenges and opportunities coexist in the field of optochemistry. Advanced technologies and theoretical modeling are still being pursued, with great prospects for controlling chemical reactions with unprecedented spatiotemporal precision.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9251772PMC
http://dx.doi.org/10.1021/acs.jpclett.2c01119DOI Listing

Publication Analysis

Top Keywords

molecular dynamics
8
ultrashort laser
8
molecular reactions
8
chemical reactions
8
light-induced ultrafast
4
molecular
4
ultrafast molecular
4
dynamics photochemistry
4
photochemistry optochemistry
4
optochemistry precisely
4

Similar Publications

The p53 protein is regarded as the "Guardian of the Genome," but its mutation is tumor progression and present in more than half of malignant tumors. The pro-metastatic property of mutant p53 makes a strong argument for targeting mutant p53 with new therapeutic strategies. However, mutant p53 was considered as a challenging target for drug discovery due to the lack of small molecular binding pockets.

View Article and Find Full Text PDF

Cardiomyocytes (CMs) lost during ischemic cardiac injury cannot be replaced due to their limited proliferative capacity. Calcium is an important signal transducer that regulates key cellular processes, but its role in regulating CM proliferation is incompletely understood. Here we show a robust pathway for new calcium signaling-based cardiac regenerative strategies.

View Article and Find Full Text PDF

The red king crab, Paralithodes camtschaticus, and the Japanese mitten crab, Eriocheir japonica, are the major commercially valuable species. In addition to their high nutritional value, these crabs are used as objects of ecological research. To extend our knowledge of crustacean biochemistry and provide a more comprehensive model of lipidomic patterns during embryonic and larval development of these crab species, we studied the dynamics of molecular species profiles of reserve lipids such as triacylglycerols (TG) and membrane lipids such as glycerophospholipids (PL).

View Article and Find Full Text PDF

The performance of Cu-exchanged chabazite (Cu-CHA) for the ammonia-assisted selective catalytic reduction of NO (NH-SCR) depends critically on the presence of paired complexes. Here, a machine-learning force field augmented with long-range Coulomb interactions is developed to investigate the effect of Al-distribution and Cu-loading on the mobility and pairing of complexes. Performing unbiased and constrained molecular dynamics simulations, we obtain unique information inaccessible to first-principle calculations and experiments.

View Article and Find Full Text PDF

Sequential addition of cations increases photoluminescence quantum yield of metal nanoclusters near unity.

Nat Commun

January 2025

State Key Laboratory of Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun, P. R. China.

Photoluminescence is one of the most intriguing properties of metal nanoclusters derived from their molecular-like electronic structure, however, achieving high photoluminescence quantum yield (PLQY) of metal core-dictated fluorescence remains a formidable challenge. Here, we report efficient suppression of the total structural vibrations and rotations, and management of the pathways and rates of the electron transfer dynamics to boost a near-unity absolute PLQY, by decorating progressive addition of cations. Specifically, with the sequential addition of Zn, Ag, and Tb into the 3-mercaptopropionic acids capped Au nanoclusters (NCs), the low-frequency vibration of the metal core progressively decreases from 144.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!