Coronoids as polycyclic aromatic macrocycles enclosing a cavity have attracted a lot of attention due to their distinctive molecular and electronic structures. They can be also regarded as nanoporous graphene molecules whose electronic properties are critically dependent on the size and topology of their outer and inner peripheries. However, because of their synthetic challenges, the extended hexagonal coronoids with zigzag outer edges have not been reported yet. Here, we report the on-surface synthesis of C144 hexagonal coronoid with outer zigzag edges on a designed precursor undergoing hierarchical Ullmann coupling and cyclodehydrogenation on the Au(111) surface. The molecular structure is unambiguously characterized by bond-resolved noncontact atomic force microscopy imaging. The electronic properties are further investigated by scanning tunneling spectroscopy measurements, in combination with the density functional theory calculations. Moreover, the values of the harmonic oscillator model of aromaticity are derived from calculations that suggest that the molecular structure is ideally represented by Clar's model. Our results provide approaches toward realizing a hexagonal coronoid with zigzag edges, potentially inspiring fabrication of hexagonal zigzag coronoids with multiple radical characters in the future.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acsnano.2c02163DOI Listing

Publication Analysis

Top Keywords

hexagonal coronoid
12
zigzag edges
12
on-surface synthesis
8
synthesis c144
8
c144 hexagonal
8
coronoid zigzag
8
electronic properties
8
molecular structure
8
hexagonal
5
zigzag
5

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!