Lactobacillus plantarum supplementation alleviates liver and intestinal injury in parenteral nutrition-fed piglets.

JPEN J Parenter Enteral Nutr

Division of Pediatric Gastroenterology and Nutrition, School of Medicine, Xin Hua Hospital, Shanghai Jiao Tong University, Shanghai, China.

Published: November 2022

Objective: Long-term parenteral nutrition (PN) causes PN-associated liver disease, for which therapeutic approaches are limited. This study aimed to investigate the effects of Lactobacillus plantarum CGMCC 1258 (LP) on liver and intestinal injury in PN-fed neonatal piglets.

Methods: The piglets received PN with or without oral LP for 14 days. The levels of liver enzymes and inflammatory markers were measured using biochemical kits and quantitative real-time polymerase chain reaction. Serum fibroblast growth factor 19 (FGF19) was detected using an enzyme-linked immunosorbent assay. The bile acid (BA) profiles in the liver, serum, and intestinal contents were determined using ultraperformance liquid chromatography coupled with mass spectrometry. The composition of intestinal bacteria was analyzed with 16S rRNA gene amplicon sequencing.

Results: LP supplementation was associated with improved markers of liver disease, inflammation, and oxidative stress in PN-fed piglets. Moreover, markers of intestinal injury and inflammation were alleviated by LP in PN-fed piglets. Mechanistically, LP increased the abundance of Lactobacillus in ileal contents and stimulated FGF19 expression in ileal mucosa. Subsequently, it increased the expression of small heterodimer partner (SHP) and inhibited cholesterol 7α-hydroxylase (CYP7A1) expression in the liver. Additionally, LP altered the systemic composition and metabolism of BAs.

Conclusions: LP alleviated liver and intestinal injury in PN-fed neonatal piglets by altering the composition of intestinal bacteria and BAs.

Download full-text PDF

Source
http://dx.doi.org/10.1002/jpen.2429DOI Listing

Publication Analysis

Top Keywords

intestinal injury
16
liver intestinal
12
lactobacillus plantarum
8
liver
8
liver disease
8
injury pn-fed
8
pn-fed neonatal
8
composition intestinal
8
intestinal bacteria
8
pn-fed piglets
8

Similar Publications

Injured epithelial organs must rapidly replace damaged cells to restore barrier integrity and physiological function. In response, injury-born stem cell progeny differentiate faster compared to healthy-born counterparts, yet the mechanisms that pace differentia-tion are unclear. Using the adult Drosophila intestine, we find that injury speeds cell differentiation by altering the lateral inhibition circuit that transduces a fate-determin-ing Notch signal.

View Article and Find Full Text PDF

After being exposed, microplastics mostly bioaccumulated in guts and gills of fish, then, through circulation, spread and bioaccumulated in other tissues. Circulatory system of fish is impacted by the microplastic bioaccumulation in their tissues, influencing a number of hematological indices that are connected with immunity, osmotic pressure, blood clotting, molecular transport and fat metabolism. Variables like size, dose, duration, food consumption and species, all affect the bioaccumulation and toxicity of the microplastic, rather than the exposure routes.

View Article and Find Full Text PDF

Objective: The aim of this study is to investigate the protective effect of Cannabidiol (CBD) on DSS-induced colitis in C57BL/6 mice and its related pathways.

Methods: A mouse model of ulcerative colitis (US) was induced by DSS. Enzyme-linked immunosorbent assay (ELISA), quantitative reverse transcription polymerase-chain reaction (qRT-PCR), Western blot (WB) and immunofluorescence (IF) were used to identify the key factors involved in inflammatory response, oxidative stress and intestinal fibrosis.

View Article and Find Full Text PDF

[Research advances in the mechanism of Toll-like receptor 4 mediated intestinal injury and inflammatory response in necrotizing enterocolitis].

Xi Bao Yu Fen Zi Mian Yi Xue Za Zhi

January 2025

Department of Neonatology, Shanghai Children's Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200062, China. *Corresponding author, E-mail:

Necrotizing enterocolitis (NEC) is an intestinal inflammatory and necrotic disease seen in premature infants, and remains the leading cause of death resulted from gastrointestinal diseases in premature infants. The specific pathogenesis of NEC is still unclear. In recent years, a lot of studies have reported that Toll-like receptor 4 (TLR4) plays a key role in the pathogenesis of NEC.

View Article and Find Full Text PDF

Post-COVID metabolic enzyme alterations in K18-hACE2 mice exacerbate alcohol-induced liver injury through transcriptional regulation.

Free Radic Biol Med

January 2025

Korea Mouse Phenotyping Center, Seoul National University, Seoul 08826, Republic of Korea; Laboratory of Developmental Biology and Genomics, Research Institute for Veterinary Science, and BK21 PLUS Program for Creative Veterinary Science Research, College of Veterinary Medicine, Seoul National University, Seoul 08826, Republic of Korea; Interdisciplinary Program for Bioinformatics, Program for Cancer Biology and BIO-MAX/N-Bio Institute, Seoul National University, Seoul 08826, Republic of Korea. Electronic address:

Article Synopsis
  • COVID-19, caused by SARS-CoV-2, poses serious global health risks, including the potential for secondary liver injury related to metabolic enzyme changes.
  • This study explores how prior infection with SARS-CoV-2 affects alcohol-induced liver damage, using transgenic mice that express human ACE2.
  • Results showed that infected mice experienced worsened liver injury after alcohol consumption, with alterations in metabolic enzymes and increased levels of a toxic alcohol byproduct, indicating a complex interaction between COVID-19 and alcohol effects on the liver.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!