In this paper, using the fractional integral with respect to the Ψ function and the Ψ-Hilfer fractional derivative, we consider the Volterra fractional equations. Considering the Gauss Hypergeometric function as a control function, we introduce the concept of the Hyers-Ulam-Rassias-Kummer stability of this fractional equations and study existence, uniqueness, and an approximation for two classes of fractional Volterra integro-differential and fractional Volterra integral. We apply the Cădariu-Radu method derived from the Diaz-Margolis alternative fixed point theorem. After proving each of the main theorems, we provide an applied example of each of the results obtained.

Download full-text PDF

Source
http://dx.doi.org/10.3934/mbe.2022308DOI Listing

Publication Analysis

Top Keywords

hyers-ulam-rassias-kummer stability
8
stability fractional
8
fractional equations
8
fractional volterra
8
fractional
7
fractional integro-differential
4
integro-differential equations
4
equations paper
4
paper fractional
4
fractional integral
4

Similar Publications

In this paper, using the fractional integral with respect to the Ψ function and the Ψ-Hilfer fractional derivative, we consider the Volterra fractional equations. Considering the Gauss Hypergeometric function as a control function, we introduce the concept of the Hyers-Ulam-Rassias-Kummer stability of this fractional equations and study existence, uniqueness, and an approximation for two classes of fractional Volterra integro-differential and fractional Volterra integral. We apply the Cădariu-Radu method derived from the Diaz-Margolis alternative fixed point theorem.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!