Exploring the spatio-temporal variation characteristics of carbon source and carbon sink under different disposal methods of crop straw is of great significance for optimizing the utilization policy of crop straw resources in China and realizing the goal of maximizing carbon emission reduction and carbon neutralization. Based on data from National Statistical Yearbook, we examined the changing trends of both the amount and value of carbon emission, carbon emission reduction, carbon sink enhancement under different crop straw disposal methods in 31 provinces of Chinese mainland. The results showed that the mean annual carbon emissions of straw burning in China from 2008 to 2019 were 8.74 million tons of COe. Since 2014, the mean annual reduction rate of carbon emissions was 17.3%. The mean annual carbon emission reduction of energy utilization was 39.82 million tons of COe, with solid briquette fuel produced by straw contributing the most with a contribution of about 98%. The amount of carbon sequestration of straw returning to field was increasing annually, with an average annual value of 271 million tons of COe. There was a carbon ecological surplus in straw disposal in China. The annual growth rate of net carbon emission reduction was 9.8%. The net carbon emission reduction intensity and its value were increasing, reaching 2.62 t·hm and 76.19 yuan·hm in 2019, respectively. A spatial pattern of 'high in the east and low in the west' was observed for the mean annual carbon emissions of straw, energy carbon emission reduction, carbon sink of straw returning to the field, and net carbon emission reduction in China, with main external characteristics of the regional differences and spatial aggregation.

Download full-text PDF

Source
http://dx.doi.org/10.13287/j.1001-9332.202205.025DOI Listing

Publication Analysis

Top Keywords

carbon emission
32
emission reduction
28
carbon
20
straw disposal
12
carbon sink
12
crop straw
12
reduction carbon
12
annual carbon
12
carbon emissions
12
tons coe
12

Similar Publications

With the accelerated urbanization and economic development in Northwest China, the efficiency of urban wastewater treatment and the importance of water quality management have become increasingly significant. This work aims to explore urban wastewater treatment and carbon reduction mechanisms in Northwest China to alleviate water resource pressure. By utilizing online monitoring data from pilot systems, it conducts an in-depth analysis of the impacts of different wastewater treatment processes on water quality parameters.

View Article and Find Full Text PDF

Carbon dots (CDs) are versatile nanomaterials that are considered ideal for application in bioimaging, drug delivery, sensing, and optoelectronics owing to their excellent photoluminescence, biocompatibility, and chemical stability features. Nitrogen doping enhances the fluorescence of CDs, alters their electronic properties, and improves their functional versatility. N-doped CDs can be synthesized via solvothermal treatment of carbon sources with nitrogen-rich precursors; however, systematic investigations of their synthesis mechanisms have been rarely reported.

View Article and Find Full Text PDF

Prefabricated construction involves manufacturing components in a factory and then transporting them to a construction site for assembly, yielding resource savings and improved efficiency. However, the large size and weight of prefabricated components, along with strict delivery requirements, introduce logistical challenges, such as increased carbon emissions during transport and site congestion. This study addresses the dual-objective vehicle scheduling problem for prefabricated components.

View Article and Find Full Text PDF

M13 bacteriophage based fluorescence immunoassay against food allergens of Ara h 3 and Mac i 1.

Food Chem

December 2024

Tianjin Key Laboratory of Food Science and Health, School of Medicine, Nankai University, Tianjin 300071, China. Electronic address:

Food allergy is increasingly prevalent and poses notable health risks, which underscores the urgent need to develop reliable and sensitive detection methods for effective identification of food allergens. This study aims to address the limitations of existing methods by developing an immunoassay utilizing bacteriophage/carbon dots (CDs)@silica core-shell nanospheres. Two CDs with different emission wavelengths (513 nm for Green CDs, 645 nm for Red CDs) were synthesized for signal development and amplification.

View Article and Find Full Text PDF

Alteration of nitrogen sink and emission by vegetation distribution in a wetland with significant change in water level.

J Environ Manage

December 2024

Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing, 400045, China; Department of Ecological Sciences and Engineering, Chongqing University, Chongqing, 400045, China. Electronic address:

In wetlands, hydrological conditions drive plant community distribution, forming vegetation zones with plant species and material cycling. This mediates nitrogen migration and NO emissions within wetlands. Five vegetation zones in a large wetland were studied during flooding and drought periods.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!