A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

[Effects of fulvic acid on photosynthetic characteristics, yield and quality of cucumber under drought stress]. | LitMetric

Fulvic acid (FA) participates in the regulation of drought stress tolerance in plants, but the underlying mechanisms remain unclear. We carried out an experiment with cucumber cultivar 'Jinyou 35' as the test material and the polyethylene glycol (PEG-6000) being used to simulate drought stress. The concentration effect of FA on drought alleviation of cucumber as well as the effect of FA on photosynthetic enzymes activities, chloroplast ultrastructure, fluorescence parameters, water use efficiency, yield and quality of cucumber plants were studied through spraying FA with different concentrations (0, 100, 300, 500, 700 and 900 mg·L). The results showed that FA with different concentrations significantly promoted the relative water content and leaf area and decreased drought injure index as well as the electrolyte leakage and malondialdehyde (MDA) content, compared with the control (0 mg·L) under drought stress. The mitigative effect of FA increased first and then decreased with the increases of FA concentration, with 700 mg·L FA showing the best effect. FA significantly enhanced the chlorophyll content, Rubiasco and Rubisco activase (RCA) activities and gene expression, net photosynthesis (), maximal photochemical efficiency of PSⅡin darkness, actual photochemical efficiency, absorbed light energy per unit area, captured light energy per unit area, quantum yield of electron transport and PSⅠ activity, decreased the increase of K point and maintained chloroplast ultrastructure. The experiment in solar-greenhouse showed that FA obviously increased water use efficiency, promoted dry matter accumulation as well as the contents of Vc, soluble sugar, soluble protein and free amino acid, and decreased tannin content. Our results suggested that FA could improve the yield and quality of cucumber in solar greenhouse under drought stress.

Download full-text PDF

Source
http://dx.doi.org/10.13287/j.1001-9332.202205.014DOI Listing

Publication Analysis

Top Keywords

drought stress
16
yield quality
12
quality cucumber
12
fulvic acid
8
chloroplast ultrastructure
8
water efficiency
8
photochemical efficiency
8
light energy
8
energy unit
8
unit area
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!