Recently, medical image encryption has attracted many researchers because of security issues in the communication process. The recent COVID-19 has highlighted the fact that medical images are consistently created and disseminated online, leading to a need for protection from unauthorised utilisation. This paper intends to review the various medical image encryption approaches along with their merits and limitations. It includes a survey, a brief introduction, and the most utilised interesting applications of image encryption. Then, the contributions of reviewed approaches are summarised and compared regarding different technical perspectives. Lastly, we highlight the recent challenges along with several directions of potential research that could fill the gaps in these domains for researchers and developers.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9192930 | PMC |
http://dx.doi.org/10.1007/s12065-021-00683-x | DOI Listing |
Sci Rep
January 2025
School of Information Science and Engineering, Yanshan University, Qinhuangdao, 066004, China.
The continuous evolution of information technology underscores the growing emphasis on data security. In the realm of medical imaging, various diagnostic images represent the privacy of individuals, and the potential repercussions of their unauthorized disclosure are substantial. Therefore, this study introduces a novel chaotic system (TLCMCML) and employs it to propose a multi-image medical image encryption algorithm.
View Article and Find Full Text PDFAdv Sci (Weinh)
January 2025
Hebei Key Laboratory of Photo-Electricity Information and Materials, College of Physics Science and Technology, Hebei University, Baoding, 071002, P. R. China.
Metal halide perovskites (MHPs) are commonly used in polarization-sensitive photodetectors (PDs) for applications such as polarization imaging, remote sensing, and optical communication. Although various methods exist to adjust the polarization-sensitive photocurrent, a universal and effective approach for continuous control of MHPs' optoelectronic and polarized properties is lacking. A universal strategy to electrically modulate the polarization ratio (PR) of self-powered polarized PDs using the ferro-pyro-phototronic effect (FPPE) in 2D perovskites is presented.
View Article and Find Full Text PDFJ Mater Chem B
January 2025
The Education Ministry Key Laboratory of Resource Chemistry, Shanghai Key Laboratory of Rare Earth Functional Materials, and Shanghai Municipal Education Committee Key Laboratory of Molecular Imaging Probes and Sensors, Shanghai Frontiers Science Research Base of Biomimetic Catalysis, Department of Chemistry, Shanghai Normal University, 100 Guilin Road, Shanghai 200234, China.
Supramolecular fluorescent materials with switchable behavior and induced luminescence enhancement are a new class of special materials for constructing fluorescence anti-counterfeiting materials. Since these materials are constructed by self-assembly through supramolecular host-guest interactions of non-covalent bonds, such fluorescent materials can regulate their optical properties through a reversible assembly-disassembly process. Inspired by the role of the β-barrel scaffold in activating strong fluorescence of a green fluorescent protein (GFP) chromophore, we designed a supramolecular system based on a novel GFP analogue (CA) and cucurbit[7]uril (CB[7]).
View Article and Find Full Text PDFCancer Imaging
January 2025
Department of Respiratory and Critical Care, First Affiliated Hospital of Gannan Medical University, Ganzhou, 341000, China.
Background: Radiomics holds great potential for the noninvasive evaluation of EGFR-TKIs and ICIs responses, but data privacy and model robustness challenges limit its current efficacy and safety. This study aims to develop and validate an encrypted multidimensional radiomics approach to enhance the stratification and analysis of therapeutic responses.
Materials And Methods: This multicenter study incorporated various data types from 506 NSCLC patients, which underwent preprocessing through anonymization methods and were securely encrypted using the AES-CBC algorithm.
Cogn Neurodyn
December 2025
Department of Mathematics, Quaid-I-Azam University, Islamabad, Pakistan.
Algebraic structures are highly effective in designing symmetric key cryptosystems; however, if the key space is not sufficiently large, such systems become vulnerable to brute-force attacks. To address this challenge, our research focuses on enlarging the key space in symmetric key schemes by integrating the non-chain ring with a four-dimensional chaotic system. While chaotic maps offer significant potential for data processing, relying solely on them does not fully leverage their operational advantages.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!