AI Article Synopsis

  • Respiratory viral infections (RVI) in lung transplant recipients (LTRs) can lead to chronic lung allograft dysfunction (CLAD), and elevated levels of donor-derived cell-free DNA (%ddcfDNA) during RVI may predict CLAD progression.
  • A study involving 39 LTRs tracked %ddcfDNA and lung function over one year, finding that high %ddcfDNA correlated with significantly greater declines in lung function and increased rates of progression or failure compared to those with low levels.
  • The findings suggest that measuring %ddcfDNA at the time of RVI is a more reliable indicator of how well LTRs will recover lung function, compared to traditional histopathology assessments.

Article Abstract

Respiratory viral infection (RVI) in lung transplant recipients (LTRs) is a risk for chronic lung allograft dysfunction (CLAD). We hypothesize that donor-derived cell-free DNA (%ddcfDNA), at the time of RVI predicts CLAD progression. We followed 39 LTRs with RVI enrolled in the Genomic Research Alliance for Transplantation for 1 year. Plasma %ddcfDNA was measured by shotgun sequencing, with high %ddcfDNA as ≥1% within 7 days of RVI. We examined %ddcfDNA, spirometry, and a composite (progression/failure) of CLAD stage progression, re-transplant, and death from respiratory failure. Fifty-nine RVI episodes, 38 low and 21 high %ddcfDNA were analyzed. High %ddcfDNA subjects had a greater median %FEV decline at RVI (-13.83 vs. -1.83, p = .007), day 90 (-7.97 vs. 0.91, p = .04), and 365 (-20.05 vs. 1.09, p = .047), compared to those with low %ddcfDNA and experienced greater progression/failure within 365 days (52.4% vs. 21.6%, p = .01). Elevated %ddcfDNA at RVI was associated with an increased risk of progression/failure adjusting for symptoms and days post-transplant (HR = 1.11, p = .04). No difference in %FEV decline was seen at any time point when RVIs were grouped by histopathology result at RVI. %ddcfDNA delineates LTRs with RVI who will recover lung function and who will experience sustained decline, a utility not seen with histopathology.

Download full-text PDF

Source
http://dx.doi.org/10.1111/ajt.17125DOI Listing

Publication Analysis

Top Keywords

high %ddcfdna
12
rvi
9
%ddcfdna
9
cell-free dna
8
respiratory viral
8
viral infection
8
lung allograft
8
allograft dysfunction
8
ltrs rvi
8
%fev decline
8

Similar Publications

Ultrasound tomography fundamentally relies on low-frequency data to avoid cycle skipping in full-waveform inversion (FWI). In the absence of sufficiently low-frequency data, we can extrapolate low-frequency content from existing high-frequency signals by using the same approach used in frequency-difference beamforming. This low-frequency content is then used to kickstart FWI and avoid cycle skipping at higher frequencies.

View Article and Find Full Text PDF

We measure the high-intensity laser propagation throughout meter-scale, channel-guided laser-plasma accelerators by adjusting the length of the plasma channel on a shot-by-shot basis, showing high-quality guiding of 500 TW laser pulses over 30 cm in a hydrogen plasma of density n_{0}≈1×10^{17}  cm^{-3}. We observed transverse energy transport of higher-order modes in the first ≈12  cm of the plasma channel, followed by quasimatched propagation, and the gradual, dark-current-free depletion of laser energy to the wake. We quantify the laser-to-wake transfer efficiency limitations of currently available petawatt-class lasers and demonstrate via simulation how control over the laser mode can significantly improve beam parameters.

View Article and Find Full Text PDF

Superdiffusion is surprisingly easily observed even in systems without the integrability underpinning this phenomenon. Indeed, the classical Heisenberg chain-one of the simplest many-body systems, and firmly believed to be nonintegrable-evinces a long-lived regime of anomalous, superdiffusive spin dynamics at finite temperature. Similarly, superdiffusion persists for long timescales, even at high temperature, for small perturbations around a related integrable model.

View Article and Find Full Text PDF

Curvature Dependence of Gravitational-Wave Tests of General Relativity.

Phys Rev Lett

December 2024

Center for Computational Astrophysics, Flatiron Institute, 162 5th Avenue, New York, New York 10010, USA.

High-energy extensions to general relativity modify the Einstein-Hilbert action with higher-order curvature corrections and theory-specific coupling constants. The order of these corrections imprints a universal curvature dependence on observations while the coupling constant controls the deviation strength. In this Letter, we leverage the theory-independent expectation that modifications to the action of a given order in spacetime curvature (Riemann tensor and contractions) lead to observational deviations that scale with the system length scale to a corresponding power.

View Article and Find Full Text PDF

Exponentially Enhanced Scheme for the Heralded Qudit Greenberger-Horne-Zeilinger State in Linear Optics.

Phys Rev Lett

December 2024

Center for Quantum Information, Korea Institute of Science and Technology (KIST), Seoul 02792, Korea and Division of Quantum Information Technology, KIST School, Korea University of Science and Technology, Seoul 02792, Korea.

High-dimensional multipartite entanglement plays a crucial role in quantum information science. However, existing schemes for generating such entanglement become complex and costly as the dimension of quantum units increases. In this Letter, we overcome the limitation by proposing a significantly enhanced linear optical heralded scheme that generates the d-level N-partite Greenberger-Horne-Zeilinger (GHZ) state with single-photon sources and linear operations.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!