Characterized as a semi-metal, gallium is a chemical element not found freely in the environment, but extracted as a by-product from other minerals. Despite of this, there are several gallium compounds with various applications, such as in the production of semiconductors, light emitting diodes; commercially as a potential cost reducer; pharmacology as cancer-related hypercalcemia, non-Hodgkin' lymphoma, breast and bladder cancer mainly and antimicrobial treatments. The latter will be emphasized in this work due to the contemporary emergence of the development of compounds with antimicrobial potential as a result of the spread of multidrug-resistant bacteria. So, this article discusses the main works, from the discovery of gallium to those that culminated in the current research in microbiology of the last two decades. The antimicrobial activity of gallium can be confirmed through the experimental data and be a promising mean to other investigations, especially due to its iron mimicry ability and the capacity to disrupt microorganisms' metabolism.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s10534-022-00406-4 | DOI Listing |
Nat Commun
January 2025
iGaN Laboratory, School of Microelectronics, University of Science and Technology of China, Hefei, PR China.
The development of an efficient and durable photoelectrode is critical for achieving large-scale applications in photoelectrochemical water splitting. Here, we report a unique photoelectrode composed of reconfigured gallium nitride nanowire-on-silicon wafer loaded with Au nanoparticles as cocatalyst that achieved an impressive applied bias photon-to-current efficiency of 10.36% under AM 1.
View Article and Find Full Text PDFMaterials (Basel)
December 2024
Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials, Ministry of Education, Shandong University, Jinan 250061, China.
In this paper, the short-range ordering structures of Ga melts has been investigated using the Wulff cluster model (WCM). The structures with a Wulff shape outside and crystal symmetry inside have been derived as the equivalent system to describe the short-range-order (SRO) distribution of the Ga melts. It is observed that the simulated HTXRD patterns of the Ga WCM are in excellent agreement with the experimental data at various temperatures (523 K, 623 K, and 723 K).
View Article and Find Full Text PDFRep Pract Oncol Radiother
December 2024
Nuclear Medicine Department, Greater Poland Cancer Centre, Poznan, Poland.
Background: The study aimed to overview radiopharmaceuticals used for the nuclear medicine (NM) imaging of prostate cancer (Pca) since the first mentions in the literature up to recent reports, with the special focus on positron emission tomography-computed tomography (PET-CT) radiotracers.
Materials And Methods: We found over 3500 articles discussing the role of PET-CT in Pca patients' management published within 1990-2023. We summarized the past and present interests of the Authors when the Pca diagnostic imaging and the use of radiotracers in Pca diagnosis are considered.
ACS Omega
December 2024
Danxia Smelter, Shenzhen Zhongjin Lingnan Nonfemet Company Limited, Shaoguan 512325, China.
Angew Chem Int Ed Engl
December 2024
Ordos Laboratory, Ordos, Inner Mongolia Autonomous Region 010020, China.
The rational design of metal oxide catalysts with enhanced oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) performance is crucial for the practical application of aqueous rechargeable zinc-air batteries (a-r-ZABs). Precisely regulating the electronic environment of metal-oxygen (M-O) active species is critical yet challenging for improving their activity and stability toward OER and ORR. Herein, we propose an atomic-level bilateral regulation strategy by introducing atomically dispersed Ga for continuously tuning the electronic environment of Ru-O and Mn-O in the Ga/MnRuO catalyst.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!