Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
In Gram-negative pathogens, the stringent response regulator DksA controls the expression of hundreds of genes, including virulence-related genes. Interestingly, Pseudomonas aeruginosa has two functional DksA paralogs: DksA1 is constitutively expressed and has a zinc-finger motif, while DksA2 is expressed only under zinc starvation conditions and does not contain zinc. DksA1 stimulates the production of virulence factors in vitro and is required for full pathogenicity in vivo. DksA2 can replace these DksA1 functions. Here, the role of dksA paralogs in P. aeruginosa tolerance to HO-induced oxidative stress has been investigated. The P. aeruginosa dksA1 dksA2 mutant showed impaired HO tolerance in planktonic and biofilm-growing cultures and increased susceptibility to macrophages-mediated killing compared to the wild type. Complementation with either dksA1 or dksA2 genes restored the wild type phenotypes. The DksA-dependent tolerance to oxidative stress involves, at least in part, the positive transcriptional control of both katA and katE catalase-encoding genes. These data support the hypothesis that DksA1 and DksA2 are eco-paralogs with indistinguishable function but optimal activity under different environmental conditions, and highlight their mutual contribution to P. aeruginosa virulence.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9213440 | PMC |
http://dx.doi.org/10.1038/s41598-022-14635-7 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!