Here we report a highly efficient PFAS preconcentration method that uses anodically generated shrinking gas bubbles to preconcentrate PFAS via aerosol formation, achieving ~ 1400-fold enrichment of PFOS and PFOA-the two most common PFAS-in 20 min. This new method improves the enrichment factor by 15 to 105% relative to the previous method that uses cathodically generated H bubbles. The shrinking gas bubbles are in situ electrogenerated by oxidizing water in an NHHCO solution. H produced by water oxidation reacts with HCO to generate CO gas, forming gas bubbles containing a mixture of O and CO. Due to the high solubility of CO in aqueous solutions, the CO/O bubbles start shrinking when they leave the electrode surface region. A mechanistic study reveals two reasons for the improvement: (1) shrinking bubbles increase the enrichment rate, and (2) the attractive interactions between the positively charged anode and negatively charged PFAS provide high enrichment at zero bubble path length. Based on this preconcentration method, we demonstrate the detection of ≥ 70 ng/L PFOA and PFOS in water in ~ 20 min by coupling it with our bubble-nucleation-based detection method, fulfilling the need of the US Environmental Protection Agency.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s00216-022-04175-4 | DOI Listing |
Soft Matter
January 2025
Department of Mathematics, National Institute of Technology Durgapur, Durgapur-713209, India.
The present article deals with the modulation of oscillatory electroosmotic flow (EOF) and solute dispersion across a nanochannel filled with an electrolyte solution surrounded by a layer of a dielectric liquid. The dielectric permittivity of the liquid layer adjacent to supporting rigid walls is taken to be lower than that of the electrolyte solution. Besides, the aforesaid liquid layer may bear additional mobile charges, , free lipid molecules, charged surfactant molecules , which in turn lead to a nonzero charge along the liquid-liquid interface.
View Article and Find Full Text PDFSci Rep
January 2025
Udmurt Federal Research Center of the Ural Branch of RAS, Baramzina str. 34, Izhevsk, 426067, Russia.
Ultrasound can improve the quality of finished products by reducing porosity and enhancing microstructure in selective laser melting, directed energy deposition, and laser beam welding. This study evaluates the efficiency of ultrasound produced by a pulsed laser via the optoacoustic effect. A quantitative model of collapse of vapor-gas bubbles has been developed under the conditions of ultrasonic treatment at near resonance frequencies.
View Article and Find Full Text PDFInorg Chem
January 2025
School of Chemistry and Chemical Engineering, School of Pharmacy, Jiangsu University, Zhenjiang 212013, P. R. China.
Electrochemical water splitting is a promising method for the generation of "green hydrogen", a renewable and sustainable energy source. However, the complex, multistep synthesis processes, often involving hazardous or expensive chemicals, limit its broader adoption. Herein, a nitrate (NO) anion-intercalated nickel-iron-cerium mixed-metal (oxy)hydroxide heterostructure electrocatalyst is fabricated on nickel foam (NiFeCeOH@NF) via a simple electrodeposition method followed by cyclic voltammetry activation to enhance its surface properties.
View Article and Find Full Text PDFACS Mater Au
January 2025
Department of Biomedical Engineering, Tel Aviv University, Tel Aviv 6997801, Israel.
Gas bubbles, commonly used in medical ultrasound (US), witness advancements with nanobubbles (NB), providing improved capabilities over microbubbles (MB). NBs offer enhanced penetration into capillaries and the ability to extravasate into tumors following systemic injection, alongside prolonged circulation and persistent acoustic contrast. Low-frequency insonation (<1 MHz) with NBs holds great potential in inducing significant bioeffects, making the monitoring of their acoustic response critical to achieving therapeutic goals.
View Article and Find Full Text PDFMaterials (Basel)
January 2025
Faculty of Production Engineering and Materials Technology, Częstochowa University of Technology, al. Armii Krajowej 19, 42-201 Częstochowa, Poland.
The paper presents the results of industrial research and numerical simulations of the chemical homogenization of liquid steel. The research object was a ladle furnace with a working capacity of the ladle of 100 t at the steel plant of Huta Częstochowa, currently Liberty Częstochowa Sp. z o.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!