Fructooligosaccharides (FOS) are fructose-based oligosaccharides employed as additives to improve the food's nutritional and technological properties. The rhizosphere of plants that accumulate fructopolysaccharides as inulin has been revealed as a source of filamentous fungi. These fungi can produce FOS either by inulin hydrolysis or by biosynthesis from sucrose, including unusual FOS with enhanced prebiotic properties. Here, we investigated the ability of Fusarium solani and Neocosmospora vasinfecta to produce FOS from different carbon sources. Fusarium solani and N. vasinfecta grew preferentially in inulin instead of sucrose, resulting in the FOS production as the result of endo-inulinase activities. N. vasinfecta was also able to produce the FOS 1-kestose and 6-kestose from sucrose, indicating transfructosylating activity, absent in F. solani. Moreover, the results showed how these carbon sources affected fungal cell wall composition and the expression of genes encoding for β-1,3-glucan synthase and chitin synthase. Inulin and fructose promoted changes in fungal macroscopic characteristics partially explained by alterations in cell wall composition. However, these alterations were not directly correlated with the expression of genes related to cell wall synthesis. Altogether, the results pointed to the potential of both F. solani and N. vasinfecta to produce FOS at specific profiles.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s12223-022-00983-4 | DOI Listing |
Int J Mol Sci
January 2025
Laboratory of Neuroendocrinology and In Situ Hybridization, Department of Anatomy, Histology and Embryology, Semmelweis University, H1094 Budapest, Hungary.
The ability to reproduce depends on metabolic status. In rodents, the ventral premammillary nucleus (PMv) integrates metabolic and reproductive signals. While leptin (adiposity-related) signaling in the PMv is critical for female fertility, male reproductive functions are strongly influenced by glucose homeostasis.
View Article and Find Full Text PDFHemasphere
January 2025
Université Paris Cité, Institut Cochin, INSERM U1016, CNRS UMR8104 Assistance Publique-Hôpitaux de Paris.Centre, Laboratory of Hematology, Hôpital Cochin Paris France.
Lower risk (LR) myelodysplastic syndromes (MDS) are heterogeneous hematopoietic stem and progenitor disorders caused by the accumulation of somatic mutations in various genes including epigenetic regulators that may produce convergent DNA methylation patterns driving specific gene expression profiles. The integration of genomic, epigenomic, and transcriptomic profiling has the potential to spotlight distinct LR-MDS categories on the basis of pathophysiological mechanisms. We performed a comprehensive study of somatic mutations and DNA methylation in a large and clinically well-annotated cohort of treatment-naive patients with LR-MDS at diagnosis from the EUMDS registry (ClinicalTrials.
View Article and Find Full Text PDFInt Immunopharmacol
January 2025
Department of Anatomy, School of Basic Medical Sciences, Guangdong Pharmaceutical University, Guangzhou, China; Guangdong Key Laboratory of Pharmaceutical Bioactive Substances, Guangdong Pharmaceutical University, Guangzhou, China. Electronic address:
Astragalin (AST), a natural flavonoid, exhibits anti-inflammatory, anti-cancer, and antioxidant properties. However, its effects and molecular mechanisms in inflammatory pain remain unclear. Therefore, this study aims to investigate the impact of AST on a Complete Freund's Adjuvant (CFA)-induced inflammatory pain mouse model and to elucidate its potential mechanisms.
View Article and Find Full Text PDFNutrients
December 2024
Cryptobiotix, Technologiepark-Zwijnaarde 82, 9052 Gent, Belgium.
Background: The human gut microbiota develops in concordance with its host over a lifetime, resulting in age-related shifts in community structure and metabolic function. Little is known about whether these changes impact the community's response to microbiome-targeted therapeutics. Providing critical information on this subject, faecal microbiomes of subjects from six age groups, spanning from infancy to 70-year-old adults (n = six per age group) were harvested.
View Article and Find Full Text PDFJ Nutr Sci Vitaminol (Tokyo)
January 2025
Laboratory of Food and Nutritional Sciences, Department of Local Produce and Food Sciences, Faculty of Life and Environmental Sciences, University of Yamanashi.
Recently, we demonstrated, using mRNA microarray analysis, that fructo-oligosaccharides (FOS), which are indigestible carbohydrates, enhanced the expression of several inflammation-related genes, such as CLEC7A, CCL2, ITGA2, and F3, by ≥4-fold in Caco-2 cells, a model of human intestinal absorptive cells, independently of intestinal bacteria (Harasawa A et al., Nutrition, 112140, 2023). However, whether FOS enhances the expression of genes in other pathways, particularly the non-inflammatory pathways, in Caco-2 cells has not been investigated.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!