Fractal scaling in animal behavioral activity, where similar temporal patterns appear repeatedly over a series of magnifications among time scales, governs the complex behavior of various animal species and, in humans, can be altered by neurodegenerative diseases and aging. However, the mechanism underlying fractal scaling remains unknown. Here, we cultured C. elegans in a microfluidic device for 3 days and analyzed temporal patterns of C. elegans activity by fractal analyses. The residence-time distribution of C. elegans behaviors shared a common feature with those of human and mice. Specifically, the residence-time power-law distribution of the active state changed to an exponential-like decline at a longer time scale, whereas the inactive state followed a power-law distribution. An exponential-like decline appeared with nutrient supply in wild-type animals, whereas this decline disappeared in insulin-signaling-defective daf-2 and daf-16 mutants. The absolute value of the power-law exponent of the inactive state distribution increased with nutrient supply in wild-type animals, whereas the value decreased in daf-2 and daf-16 mutants. We conclude that insulin signaling differentially affects mechanisms that determine the residence time in active and inactive states in C. elegans behavior. In humans, diabetes mellitus, which is caused by defects in insulin signaling, is associated with mood disorders that affect daily behavioral activities. We hypothesize that comorbid behavioral defects in patients with diabetes may be attributed to altered fractal scaling of human behavior.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9213454 | PMC |
http://dx.doi.org/10.1038/s41598-022-13022-6 | DOI Listing |
Sci Rep
January 2025
School of Mechanical and Engineering, Liaoning Technical University, Fuxin, 123000, China.
As the depth of coal mining in China continues to increase, the fracturing of coal rock masses has an increasingly complex impact on the surrounding rock roadways. The majority of the mine's roadways run through coal rock masses with hard roofs and soft bottoms, which typically exhibit complex dynamic behaviour. To further research the mechanical behaviour and fracture evolution of coal rock masses under hard-roof and soft-floor conditions, the study is based on the majority of working faces in a mine, which have hard roofs and soft floors.
View Article and Find Full Text PDFPLoS One
January 2025
Department of Chemistry, Ashoka University, Sonipat, Haryana, India.
Pancreatic Ductal Adenocarcinoma (PDAC) is a devastating disease with poor clinical outcomes, which is mainly because of delayed disease detection, resistance to chemotherapy, and lack of specific targeted therapies. The disease's development involves complex interactions among immunological, genetic, and environmental factors, yet its molecular mechanism remains elusive. A major challenge in understanding PDAC etiology lies in unraveling the genetic profiling that governs the PDAC network.
View Article and Find Full Text PDFJ Vis Exp
January 2025
Fever Outpatient Clinic, Dongzhimen Hospital, Affiliated to Beijing University of Chinese Medicine;
Non-invasive assessment of pulmonary nodule malignancy remains a critical challenge in lung cancer diagnosis. Traditional methods often lack precision in differentiating benign from malignant nodules, particularly in the early stages. This study introduces an approach using multifractal spectrum analysis to quantitatively evaluate pulmonary nodule characteristics.
View Article and Find Full Text PDFEntropy (Basel)
January 2025
School of Tourism and Planning, Pingdingshan University, Pingdingshan 467000, China.
The formation and development of cities are inseparable from a certain scale of water resources. The information contained in the morphological structures of cities and water systems is often overlooked. Exploring the spatiotemporal evolution of water system structures (WSS) and urban system structures (USS) can reveal the "urban-water" relationship from a new perspective.
View Article and Find Full Text PDFInt J Biol Macromol
January 2025
State Key Laboratory of Food Science and Technology, Nanchang University, No. 235 Nanjing East Road, Nanchang 330047, China; International Institute of Food Innovation Co, Ltd, Nanchang University, Nanchang 330200, China. Electronic address:
Extrusion is a critical process in rice noodle production. However, the underlying mechanism by which it influences noodle quality remains inadequately understood. In this study, rice noodles were processed at extrusion temperatures ranging from 100 °C to 140 °C and characterized in terms of molecular structure, short- and long-range order, microstructure, cooking loss, and texture properties.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!