Epidermal Growth Factor Receptor (EGFR), a transmembrane tyrosine kinase receptor, belongs to the ErbB receptor family, also known as HER1 or ErbB1. Its abnormal expression and activation contribute to tumor development, especially in non-small cell lung cancer (NCSCL). The first-to fourth-generation inhibitors of EGFR were developed to solve mutations at different sites, but the problem of resistance has not been fundamentally addressed. Targeted protein degradation (TPD) technologies, including PROteolysis Targeting Chimeras (PROTACs) and LYsosome Targeting Chimeras (LYTACs), take advantages of protein destruction mechanism in cells, which make up for shortcomings of traditional small molecular occupancy-driven inhibitors. PROTACs based heterobifunctional EGFR degraders were recently developed by making use of wild-type (WT) and mutated EGFR inhibitors. These degraders compared with EGFR inhibitors showed better efficiency in their cellular potency, inhibition and toxicity profiles. In this review, we first introduce the structural properties of EGFR, the inhibitors that have been developed against WT/mutated EGFR, and then mainly focuses on the recent advances of EGFR-targeting degraders along with its limitations and unlimited prospects.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.ejmech.2022.114533 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!