A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Process engineering strategy for large scale outdoor cultivation of Tetradesmus obliquus CT02 coupled with pH guided CO feeding. | LitMetric

Process engineering strategy for large scale outdoor cultivation of Tetradesmus obliquus CT02 coupled with pH guided CO feeding.

J Environ Manage

Department of Biosciences & Bioengineering, Indian Institute of Technology, Guwahati, Assam, 781039, India. Electronic address:

Published: September 2022

A novel CO tolerant microalga Tetradesmus obliquus CT02, was previously evaluated to be a suitable bio refinery platform for synthesis of bioactive molecules, biodiesel, and biofertilizer. In the present study, a process engineering strategy was developed targeting improved growth performance of the strain at large scale under fluctuating outdoor environmental conditions. The strategy relies on maintaining pH of the culture at its optimal value via cascade control with CO feeding. The strategy was developed at laboratory scale bubble column photobioreactor under diurnal variation of simulated sunlight intensity and was further validated through growth performance of the strain under outdoor conditions in a 100 L airlift bioreactor. Under laboratory condition, 53.3% and 85.16% improvement in biomass concentration (1.87 g L) and productivity (114.8 mg L day) was achieved as compared to the uncontrolled pH, respectively. The strategy demonstrated a significant improvement in biomass concentration and productivity by 225.7% and 121.6% respectively, compared to the pH uncontrolled batch, even under outdoor fluctuating environmental condition.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jenvman.2022.115539DOI Listing

Publication Analysis

Top Keywords

process engineering
8
engineering strategy
8
large scale
8
tetradesmus obliquus
8
obliquus ct02
8
strategy developed
8
growth performance
8
performance strain
8
improvement biomass
8
biomass concentration
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!