Metal-based micro-composite of L-arabinose isomerase and L-ribose isomerase for the sustainable synthesis of L-ribose and D-talose.

Colloids Surf B Biointerfaces

Biotechnology and Synthetic Biology, Center of Innovative and Applied Bioprocessing, Sector 81, Knowledge City, Mohali 140306, India; Regional Centre for Biotechnology (RCB), Faridabad, Haryana 121001, India. Electronic address:

Published: September 2022

The biocatalysts are broadly explored in the biological transformation processes. The enzyme cascade catalysis involves various catalytic activities in a sequential process to produce the desired product including the formation of reaction intermediates. Enzyme immobilization is a method in which enzymes are confined within a support or matrix either physically or chemically to enhance their relative stability and catalytic activity in the enzyme cascade catalysis. In view of this, L-arabinose isomerase (L-AI) and L-ribose isomerase (L-RI) were immobilized on zeolite based metal framework as a micro-composite construct (DEMC@L-AI+L-RI) using linker, and metal ions. Such immobilization could be of great significance and provide several advantages like mesoporous surface for enzyme adsorption, desirable functionality in the production of products in enzyme cascade reaction, high storage stability and enhanced recyclability. The developed DEMC@L-AI+L-RI was characterized using SEM, FTIR, CLSM and TGA. The immobilization yield was 32% and loading of enzyme was 22% on the surface of micro-composite. The DEMC@L-AI+L-RI showed relatively stable catalytic activity at pH 5-6 and temperature 40 °C. The catalytic efficiency (k/K) of both the enzymes was increased by 1.5-fold after immobilization. With the immobilized biocatalyst, bioconversion of L-arabinose to L-ribose was 22.6% and D-galactose to D-talose was 15.2%. The reusability of developed biocatalyst for more than six cycles was observed for more than 50% yield of the sugars. The conversion of biomass sugars from beetroot and onion waste residues was 20% and 14% to produce ribose and talose, respectively.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.colsurfb.2022.112637DOI Listing

Publication Analysis

Top Keywords

enzyme cascade
12
l-arabinose isomerase
8
l-ribose isomerase
8
cascade catalysis
8
catalytic activity
8
enzyme
6
metal-based micro-composite
4
micro-composite l-arabinose
4
isomerase
4
l-ribose
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!