The effects of nanoplastics on adipose stromal cells from swine tissues.

Domest Anim Endocrinol

Dipartimento di Scienze Medico-Veterinarie, Università degli Studi di Parma, Via del Taglio 10, 43126 Parma, Italy.

Published: October 2022

Plastic is one of the main sources of marine and terrestrial pollution. This material can fragment into micro- (<-5 mm) and nanoplastics (NPs) (<100 nm) following degradation. Animals are exposed to these particles by ingesting contaminated food, respiration or filtration, and transdermally. In organisms, NPs can cross biological membranes, and cause oxidative stress, cell damage, apoptosis, and endocrine interference. We previously demonstrated that polystyrene - NPs interfered with ovarian cell functions. Since reproduction involves a high energy expenditure and a crucial role is played by adipose tissue, the aim of the present study was to evaluate the effects of NPs on primary adipose stromal cells (ASCs) isolated from swine adipose tissues. In particular, the effects on cell viability, proliferation, metabolic activity, inflammatory process mediators and oxidative stress markers were assessed. The obtained results did not reveal a significant variation in cell proliferation, metabolic activity was increased (P < 0.01) but only at the lowest concentration, while viability showed a significant decrease after prolonged exposure to NPs (P < 0.01). TNF-α was increased (P < 0.05), while PAI-1 was inhibited (P < 0.001). Redox status was significantly modified; in particular, the production of O HO and NO was stimulated (P < 0.05), the non-enzymatic antioxidant power was reduced (P < 0.05) while catalase activity was significantly (P < 0.01) increased.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.domaniend.2022.106747DOI Listing

Publication Analysis

Top Keywords

effects nanoplastics
4
nanoplastics adipose
4
adipose stromal
4
stromal cells
4
cells swine
4
swine tissues
4
tissues plastic
4
plastic main
4
main sources
4
sources marine
4

Similar Publications

Polyethylene nanoplastics (NPs) are widely diffused in terrestrial environments, including soil ecosystems, but the stress mechanisms in plants are not well understood. This study aimed to investigate the effects of two increasing concentrations of NPs (20 and 200 mg kg of soil) in lettuce. To this aim, high-throughput hyperspectral imaging was combined with metabolomics, covering both primary (using NMR) and secondary metabolism (using LC-HRMS), along with lipidomics profiling (using ion-mobility-LC-HRMS) and plant performance.

View Article and Find Full Text PDF

High-Density Polyethylene (HDPE) and Low-Density Polyethylene (LDPE) films were used to create nanoplastic (NP) models, with the shape of delamination occurring during degradation. In the case of HDPE, selective degradation occurred not only in the amorphous part, but also in the crystalline part at the same time. Some of the lamellae that extend radially to form the spherulite structure were missing during the 30-day degradation.

View Article and Find Full Text PDF

Plastics are widely produced due to their stability and ease of manufacturing, but many of them quickly become a waste, breaking down into microplastics and nanoplastics. While methods for the identification and characterization of plastic particles are well consolidated, the small size of nanoplastics presents challenges for their detection and analysis. Furthermore, due to the difficulty of identifying nanoplastics, analytical studies concerning their effect on cells and a comprehensive spectroscopic characterization are still lacking.

View Article and Find Full Text PDF

The potential health risks posed by the coexistence of nanoplastics (NPs) and triclosan (TCS) have garnered significant attention. However, the effects and underlying mechanisms of NPs and TCS on key functional proteins at the molecular level remain poorly understood. This study reports the effect of polystyrene nanoplastics (PSNPs) on the binding of TCS to human serum albumin (HSA) using multispectral methods and molecular simulation systems.

View Article and Find Full Text PDF

Microplastics in Agricultural Crops and Their Possible Impact on Farmers' Health: A Review.

Int J Environ Res Public Health

December 2024

Department Innovative Technologies in Medicine and Dentistry, University "G. d'Annunzio", Via dei Vestini, 66100 Chieti, Italy.

The indiscriminate use of plastic products and their inappropriate management and disposal contribute to the increasing presence and accumulation of this material in all environmental zones. The chemical properties of plastics and their resistance to natural degradation lead over time to the production of microplastics (MPs) and nanoplastics, which are dispersed in soil, water, and air and can be absorbed by plants, including those grown for food. In agriculture, MPs can come from many sources (mulch film, tractor tires, compost, fertilizers, and pesticides).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!