The field of recurrent neural networks is over-populated by a variety of proposed learning rules and protocols. The scope of this work is to define a generalized framework, to move a step forward towards the unification of this fragmented scenario. In the field of supervised learning, two opposite approaches stand out, error-based and target-based. This duality gave rise to a scientific debate on which learning framework is the most likely to be implemented in biological networks of neurons. Moreover, the existence of spikes raises the question of whether the coding of information is rate-based or spike-based. To face these questions, we proposed a learning model with two main parameters, the rank of the feedback learning matrix [Formula: see text] and the tolerance to spike timing τ⋆. We demonstrate that a low (high) rank [Formula: see text] accounts for an error-based (target-based) learning rule, while high (low) tolerance to spike timing promotes rate-based (spike-based) coding. We show that in a store and recall task, high-ranks allow for lower MSE values, while low-ranks enable a faster convergence. Our framework naturally lends itself to Behavioral Cloning and allows for efficiently solving relevant closed-loop tasks, investigating what parameters [Formula: see text] are optimal to solve a specific task. We found that a high [Formula: see text] is essential for tasks that require retaining memory for a long time (Button and Food). On the other hand, this is not relevant for a motor task (the 2D Bipedal Walker). In this case, we find that precise spike-based coding enables optimal performances. Finally, we show that our theoretical formulation allows for defining protocols to estimate the rank of the feedback error in biological networks. We release a PyTorch implementation of our model supporting GPU parallelization.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9249234 | PMC |
http://dx.doi.org/10.1371/journal.pcbi.1010221 | DOI Listing |
Philos Trans A Math Phys Eng Sci
January 2025
Microsystems Group, School of Engineering, Newcastle University, Newcastle upon Tyne NE1 7RU, UK.
The increasing demand for processing large volumes of data for machine learning (ML) models has pushed data bandwidth requirements beyond the capability of traditional von Neumann architecture. In-memory computing (IMC) has recently emerged as a promising solution to address this gap by enabling distributed data storage and processing at the micro-architectural level, significantly reducing both latency and energy. In this article, we present In-Memory comPuting architecture based on Y-FlAsh technology for Coalesced Tsetlin machine inference (IMPACT), underpinned on a cutting-edge memory device, Y-Flash, fabricated on a 180 nm complementary metal oxide semiconductor (CMOS) process.
View Article and Find Full Text PDFSci Rep
January 2025
Computational Physics Key Laboratory of Sichuan Province, Yibin University, Yibin, China.
The potential energy curves, dipole moments and transition dipole moments of the 14 Λ-S states and 30 Ω states of TlBr cation were performed using the multi-reference configuration interaction method. The Davidson correction and spin-orbit coupling effects were also considered. The spectroscopic properties and transition properties of TlBr cation were reported at the first time.
View Article and Find Full Text PDFSci Rep
January 2025
Laboratory for Artificial Intelligence, Institute for Computational Science and Artificial Intelligence, Van Lang University, Ho Chi Minh City, Vietnam.
Compliant mechanism has some advantages and has been widely applied in many accurate positioning systems. However, modeling the compliant mechanism behavior has suffered from many challenges, such as unstable results, and the limitation of training data set. In the field of compliant mechanism modeling, there has been no research interested in applying meta-heuristics optimization algorithms to optimize the weights and biases of the neural network globally.
View Article and Find Full Text PDFSci Rep
January 2025
College of Intelligent Systems Science and Engineering, Hubei Minzu University, Enshi, 445000, China.
This paper addresses the low level of intelligence in tea processing equipment in Enshi Prefecture by designing an intelligent withering control system based on the STMicroelectronics 32-bit Microcontroller (STM32). This control system can achieve real-time monitoring of the withering environment and automate the control of heating and ventilation dehumidification modules. By integrating IoT technology, relevant users can view the tea production process via mobile devices, enabling intelligent and remote production operations.
View Article and Find Full Text PDFSci Rep
January 2025
Department of Physics, The American University in Cairo, New Cairo, 11835, Egypt.
Inverse design with topology optimization considers a promising methodology for discovering new optimized photonic structure that enables to break the limitations of the forward or the traditional design especially for the meta-structure. This work presents a high efficiency mid infra-red imaging photonics element along mid infra-red wavelengths band starts from 2 to 5 µm based on silicon nitride optimized material structures. The first two designs are broadband focusing and reflective meta-lens under very high numerical aperture condition (NA = 0.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!