A low-power, impedance-based integrated circuit (IC) readout architecture is presented for cell analysis and cytometry applications. A three-electrode layout and source-differential excitation cancels baseline current prior to the sensor front-end, which enables the use of a high-gain readout circuit for the difference current. A lock-in architecture is employed with down-conversion and up-conversion in the feedback loop, enabling high closed-loop gain (up to 10 M Ω) and high bandwidth (up to 40 MHz). A hybrid-RC feedback network mitigates the SNR degradation seen over a wide operating frequency range when using purely capacitive feedback. The effect of phase shift on the closed-loop system gain and noise performance are analyzed in detail, along with optimization strategies, and the design includes fine-grained phase adjustment to minimize phase error. The impedance sensor was fabricated in a 0.18 μ m CMOS process and consumes 9.7 mW with an operating frequency from 50 kHz to 40 MHz and provides adjustable bandwidth. Measurements demonstrate that the impedance sensor achieves 6 pA [Formula: see text] input-referred noise over 200 Hz bandwidth at 0.5 MHz modulation frequency. Combined with a microfluidic flow cell, measured results using this source-differential measurement approach are presented using both monodisperse and polydisperse sample solutions and demonstrate single-cell resolution, detecting 3 μ m diameter particles in solution with 22 dB SNR.

Download full-text PDF

Source
http://dx.doi.org/10.1109/TBCAS.2022.3182905DOI Listing

Publication Analysis

Top Keywords

bandwidth mhz
8
operating frequency
8
impedance sensor
8
khz-40 mhz
4
mhz impedance
4
impedance measurement
4
measurement architecture
4
architecture source-differential
4
source-differential flow
4
flow cytometry
4

Similar Publications

Complementary transistors are critical for circuits with compatible input/output signal dynamic range and polarity. Organic electronics offer biocompatibility and conformability; however, generation of complementary organic transistors requires introduction of separate materials with inadequate stability and potential for tissue toxicity, limiting their use in biomedical applications. Here, we discovered that introduction of source/drain contact asymmetry enables spatial control of de/doping and creation of single-material complementary organic transistors from a variety of conducting polymers of both carrier types.

View Article and Find Full Text PDF

This paper explores the implementation of a VCO-based ADC, achieving an ENOB of 12 bits with 1 MHz of a sampling rate in the audio bandwidth. The solution exploits the scalability and PVT invariance of a novel digital-to-frequency converter to reduce the size and consumed power. The architecture has been validated in a 130 nm CMOS technology node displaying a power consumption of 105.

View Article and Find Full Text PDF

Wearable communication technologies necessitate antenna designs that harmonize ergonomic compatibility, reliable performance, and minimal interaction with human tissues. However, high specific absorption rate (SAR) levels, limited radiation efficiency, and challenges in integration with flexible materials have significantly constrained widespread deployment. To address these limitations, this manuscript introduces a novel wearable cavity-backed substrate-integrated waveguide (SIW) antenna augmented with artificial magnetic conductor (AMC) structures.

View Article and Find Full Text PDF

Design of Two Compact Wideband Monopoles Through Loading with Linear Approximated Lumped Components.

Micromachines (Basel)

December 2024

Guangxi Key Laboratory of Wireless Wideband Communication and Signal Processing, Guilin University of Electronic Technology, Guilin 541004, China.

In this paper, two ultra-wideband monopoles in a colinear structure are presented for application in remote terrestrial communication systems. The antennas consist of a loaded monopole with a hat and an elevated loaded monopole located in the upper position. All lumped loads are modeled as linear frequency-dependent components to approximate the practical component property for achieving ultra-wideband characteristics, since the constant value property of a component is only present in a relatively narrow band.

View Article and Find Full Text PDF

A substrate-integrated waveguide (SIW) bandpass filter (BPF) with extraordinary selectivity and an adequate upper stopband for C-band Satellite Communication (SATCOM) applications is proposed in this paper. The design comprises comb-shaped slots engraved on a half-mode SIW (HMSIW) that constitute a multimode resonator (MMR). Its performance is further ameliorated by applying the first and second iterations of the Minkowski fractal curve in the ground plane as a defected ground structure (DGS).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!