Enhancing microstructural and electrochemical stabilities of Ni-rich layered oxides is critical for improving the safety and cycle-life of high-energy Li-ion batteries. Here we propose a thermochemical cyclization strategy where heating polyacrylonitrile with LiNiCoMnO can simultaneously construct a cyclized polyacrylonitrile outer layer and a rock-salt bridge-like inner layer, forming a compact dual-coating of LiNiCoMnO. Systematic studies demonstrate that the mild cyclization reaction between polyacrylonitrile and LiNiCoMnO induces a desirable "layered to rock-salt" structural transformation to create a nano-intermedium that acts as the bridge for binding cyclized polyacrylonitrile to layered LiNiCoMnO. Because of the improvement of the structural and electrochemical stability and electrical properties, this cathode design remarkably enhances the cycling performance and rate capability of LiNiCoMnO, showing a high reversible capacity of 183 mAh g and a high capacity retention of 83% after 300 cycles at 1 C rate. Notably, this facile and scalable surface engineering makes Ni-rich cathodes potentially viable for commercialization in high-energy Li-ion batteries.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.nanolett.2c01002DOI Listing

Publication Analysis

Top Keywords

high-energy li-ion
12
li-ion batteries
12
thermochemical cyclization
8
ni-rich layered
8
polyacrylonitrile linicomno
8
cyclized polyacrylonitrile
8
linicomno
5
cyclization constructs
4
constructs bridged
4
bridged dual-coating
4

Similar Publications

Beyond Inducing Anionic Redox: Controllable Migration Sequence of Li Ions in Transition Metal Layers Toward Highly Stable Li-Rich Cathodes.

Adv Mater

January 2025

Center of Energy Storage Materials and Technology, College of Engineering and Applied Sciences, Jiangsu Key Laboratory of Artificial Functional Materials, National Laboratory of Solid-State Microstructures and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, 210093, P. R. China.

The energy density of layered oxides of Li-ion batteries can be enhanced by inducing oxygen redox through replacing transition metal (TM) ions with Li ions in the TM layer. Undesirably, the cathodes always suffer from unfavorable structural degradation, which is closely associated with irreversible TM migration and slab gliding, resulting in continuous capacity and voltage decay. Herein, attention is paid to the Li ions in the TM layer (Li) and find their extra effects beyond inducing oxygen redox, which has been rarely mentioned.

View Article and Find Full Text PDF
Article Synopsis
  • All-solid-state lithium-ion batteries (ASSLBs) are poised to enhance the performance and safety of next-generation electronics, especially electric vehicles, by utilizing solid electrolytes with high ionic conductivity.
  • Researchers have substituted the B-site of LiLaTiO (LLTO) with Ga to create Ga-doped LLTO solid electrolytes, leading to structural improvements, enhanced ionic conductivity, and better electrochemical stability through a solid-state reaction method.
  • The results show that Ga-doped LLTO exhibits a significantly increased ionic conductivity of 4.15 × 10 S cm in LiLaTiGaO (with 3% Ga), making it a promising candidate for future ASSLB applications due to its stable operating voltage range.
View Article and Find Full Text PDF

LiZrF-based electrolytes for durable lithium metal batteries.

Nature

January 2025

School of Environment and Energy, State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Atmospheric Environment and Pollution Control, South China University of Technology, Guangzhou, China.

Lithium (Li) metal batteries (LMBs) are promising for high-energy-density rechargeable batteries. However, Li dendrites formed by the reaction between highly active Li and non-aqueous electrolytes lead to safety concerns and rapid capacity decay. Developing a reliable solid-electrolyte interphase is critical for realizing high-rate and long-life LMBs, but remains technically challenging.

View Article and Find Full Text PDF

Metal-Ligand Spin-Lock Strategy for Inhibiting Anion Dimerization in Li-Rich Cathode Materials.

J Am Chem Soc

January 2025

Beijing Key Laboratory of Theory and Technology for Advanced Batteries Materials, School of Materials Science and Engineering, Peking University, Beijing 100871, P. R. China.

Article Synopsis
  • Anion dimerization in Li-rich cathode materials hampers the performance of Li-ion batteries by causing rapid capacity loss and poor reaction kinetics.
  • The proposed metal-ligand spin-lock strategy utilizes an Fe-Ni couple to stabilize the spin orientations of anion electrons, effectively reducing anion dimerization.
  • Experimental results with ID-LTS and other materials showed improved electrochemical performance, validating the potential of this strategy for developing better high-energy-density battery materials.
View Article and Find Full Text PDF

Amphiphilic copolymers of comb-like poly(poly(ethylene glycol) methacrylate) (PPEGMA) with methyl methacrylate (MMA) synthesized by one-pot atom transfer radical polymerization were mixed with lithium bis (trifluoromethanesulfonyl) imide salt to formulate dry solid polymer electrolytes (DSPE) for semisolid-state Li-ion battery applications. The PEO-type side chain length (EO monomer's number) in the PEGMA macromonomer units was varied, and its influence on the mechanical and electrochemical characteristics was investigated. It was found that the copolymers, due to the presence of PMMA segments, possess viscoelastic behavior and less change in mechanical properties than a PEO homopolymer with 100 kDa molecular weight in the investigated temperature range.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!