Research indicates that nanoparticles can be an effective agricultural pest management tool, though unintended effects on the insect must be evaluated before their use in agroecosystems. Chrysodeixis includens (Walker) was used as a model to evaluate chronic parental and generational exposure to empty, positively charged zein nanoparticles ((+)ZNP) and methoxyfenozide-loaded zein nanoparticles (+)ZNP(MFZ) at low-lethal concentrations. To determine concentration limits, an acute toxic response test on meridic diet evaluated (+)ZNP(MFZ) and technical grade methoxyfenozide using two diet assay techniques. No differences in acute toxicity were observed between the two treatments within their respective bioassays. With these results, population dynamics following chronic exposure to low-lethal concentrations were evaluated. Parental lifetables evaluated cohorts of C. includens reared on diet treated with LC5 equivalents of (+)ZNP, (+)ZNP(MFZ), or technical grade methoxyfenozide. Compared to technical grade methoxyfenozide, (+)ZNP(MFZ) lowered both the net reproductive rate and intrinsic rate of increase, and was more deleterious to C. includens throughout its lifespan. This was contrasted to (+)ZNP, which showed no differences in population dynamics when compared with the control. To evaluate chronic exposure to (+)ZNP, generational lifetables reared cohorts of C. includens on LC5 equivalent values of (+)ZNP and then took the resulting offspring to be reared on either (+)ZNP or untreated diet. No differences in lifetable statistics were observed between the two treatments, suggesting that (+)ZNP at low ppm do not induce toxic generational effects. This study provides evidence into the effects of nanodelivered methoxyfenozide and the generational impact of (+)ZNP.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1093/ee/nvac042 | DOI Listing |
J Biomater Sci Polym Ed
January 2025
Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER)-Ahmedabad, Gandhinagar, India.
Zein, a plant-based protein obtained from the endosperm of corn ( L.) received colossal attention in recent years due to its promising features like being economical, mucoadhesive, gastro-resistant, biocompatible and aids to load hydrophilic and hydrophobic therapeutic agents. It can be employed for the fabrication of various drug delivery systems such as nanoparticles, micelles, hydrogels, nanofibers and films.
View Article and Find Full Text PDFInt J Biol Macromol
December 2024
School of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China. Electronic address:
With an increasing emphasis on environmental protection and sustainability, natural polymers like proteins and polysaccharides are being utilized more frequently in the development of biodegradable food packaging. However, the limited properties of these biopolymers have restricted their widespread applicability within the food industry. To address this issue, eugenol-loaded zein nanoparticles (ZE NPs) were incorporated into pea starch/soy protein-based films, and their effect on the physicochemical properties of these films were investigated.
View Article and Find Full Text PDFFood Chem
December 2024
College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, PR China; Key Laboratory of Environment Correlative Dietology (Huazhong Agricultural University), Ministry of Education, Wuhan, Hubei 430070, PR China. Electronic address:
Improving sea buckthorn flavonoids (SF) stability and bioacccessibility is of more practical significance for evaluating the total bioacccessibility of such foods. Therefore, we prepared nanoparticles using zein and gum Arabic (GA) by anti-solvent precipitation to encapsulate SF. Nanoparticles were characterized and assessed for their effect on the stability, release, bioaccessibility, absorption, and antioxidant properties of SF in the in vitro digestion and cell line.
View Article and Find Full Text PDFInt J Biol Macromol
December 2024
Qilu University of Technology (Shandong Academy of Sciences), Shandong Food Ferment Industry Research & Design Institute, Jinan 250000, China. Electronic address:
Prodigiosin (PG) is a natural compound produced by microorganisms, that is known for its promising bioactive properties. However, owing to its inherent water insolubility, low bioavailability, and poor stability, the practical application of prodigiosin remains challenging. In this work, the nanoparticles of prodigiosin-loaded zein-pectin were prepared using electrostatic deposition and antisolvent precipitation methods.
View Article and Find Full Text PDFACS Appl Mater Interfaces
December 2024
Laboratory of Nanostructured Formulations, Universidade Estadual do Centro-Oeste-UNICENTRO, Alameda Élio Antônio Dalla Vecchia, 838, 85040-167 Guarapuava, PR, Brazil.
Nanotechnology-based drug delivery systems offer a solution to the pharmacokinetic limitations of voriconazole (VRC), including saturable metabolism and low oral bioavailability. This study developed zein/pectin/hyaluronic acid nanoparticles (ZPHA-VRC NPs) to improve VRC's pharmacokinetics and biodistribution. The nanoparticles had a spherical morphology with an average diameter of 268 nm, a zeta potential of -48.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!