A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Co-composting of digestate and garden waste with biochar: effect on greenhouse gas production and fertilizer value of the matured compost. | LitMetric

Biogas digestate is a nitrogen (N) rich waste product that has potential for application to soil as a fertilizer. Composting of digestate is recognized as an effective step to reduce potentially negative consequences of digestate application to soils. However, the structure of the digestate and the high N content can hinder effective composting. Biochar, which can be produced through the pyrolysis of waste biomass, has shown the potential to improve compost structure and increase N retention in soils. We studied how a high-temperature wood biochar affects the composting process, including greenhouse gas emissions, and the fertilizer value of the compost product including nutrient content, leachability and plant growth. The high Biochar dose (17% w/w) had a significantly positive effect on the maximum temperature (5°C increase vs. no biochar) and appeared to improve temperature stability during composting with less variability between replicates. Biochar addition reduced cumulative NO emission by 65-70%, but had no significant effect on CO and CH emission. Biochar did not contribute to greater retention of nitrogen (N) contained in the digestate, but had a dilution effect on both N content and mineral nutrients. Fertilization with compost enhanced plant growth and nutrient retention in soil compared to mineral fertilization (NPK), but biochar had no additional effects on these parameters. Our results show that biochar improves the composting of digestate with no subsequent negative effects on plants.

Download full-text PDF

Source
http://dx.doi.org/10.1080/09593330.2022.2089057DOI Listing

Publication Analysis

Top Keywords

biochar
9
greenhouse gas
8
composting digestate
8
plant growth
8
digestate
6
composting
5
co-composting digestate
4
digestate garden
4
garden waste
4
waste biochar
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!