The pulsatile 3D-Hemodynamics in a doubly afflicted human descending abdominal artery with iliac branching.

Comput Methods Biomech Biomed Engin

Department of Cardiology, Institute of Medical Science, BHU, Varanasi, Uttar Pradesh, India.

Published: May 2023

The study of patient-specific human arterial flow dynamics is well known to face challenges like a) apt geometric modelling, b) bifurcation zone meshing, and c) capturing the hemodynamic prone to variations with multiple disease complications. Due to aneurysms and stenosis in the same arterial network, the blood flow dynamics get affected, which needs to be explored. This study develops a new protocol for accurate geometric modelling, bifurcation zone meshing and numerically investigates the arterial network with abdominal aortic aneurysms (AAA) and right internal iliac stenosis (RIIAS). A realistic arterial model is reconstructed from the computed tomography (CT) data of a human subject. To understand the combined effect of the aneurysm and aortoiliac occlusive diseases in a patient, an arterial network with AAA, RIIAS, multiple branches tapering, and curvature has been considered. Clinically significant pulsatile blood flow simulations have been carried out to trace the alteration in the flow dynamics with multiple pathological complications under consideration. The transient blood flow dynamics are investigated via wall shear stress, wall pressure, velocity contour, streamlines, vorticity, and swirling strength. During the systolic deceleration phase, the rhythmic nested rapid secondary oscillatory WSS, adverse pressure gradients, high WSS, and high WP bands are noticed. Also, the above studies will help researchers, clinicians, and doctors understand the influence of morphological changes on hemodynamics in cardiovascular studies.

Download full-text PDF

Source
http://dx.doi.org/10.1080/10255842.2022.2082839DOI Listing

Publication Analysis

Top Keywords

flow dynamics
16
arterial network
12
blood flow
12
geometric modelling
8
modelling bifurcation
8
bifurcation zone
8
zone meshing
8
arterial
5
flow
5
pulsatile 3d-hemodynamics
4

Similar Publications

The present article deals with the modulation of oscillatory electroosmotic flow (EOF) and solute dispersion across a nanochannel filled with an electrolyte solution surrounded by a layer of a dielectric liquid. The dielectric permittivity of the liquid layer adjacent to supporting rigid walls is taken to be lower than that of the electrolyte solution. Besides, the aforesaid liquid layer may bear additional mobile charges, , free lipid molecules, charged surfactant molecules , which in turn lead to a nonzero charge along the liquid-liquid interface.

View Article and Find Full Text PDF

Microfluidic chips are powerful tools for investigating numerous variables including chemical and physical parameters on protein aggregation. This study investigated the aggregation of bovine serum albumin (BSA) in two different systems: a vial-based static system and a microfluidic chip-based dynamic system in which BSA aggregation was induced successfully. BSA aggregation induced in a microfluidic chip on a timescale of seconds enabled a dynamic investigation of the forces driving the aggregation process.

View Article and Find Full Text PDF

This study examines the behavior of the Casson nanofluid bioconvection flow around a spinning disc under various influences, including gyrotactic microorganisms, multiple slips, and thermal radiation. Notably, it accounts for the reversible nature of the flow and incorporates the esterification process. The aim of this study is to investigate the influence of reversible chemical reactions on the flow behavior of a Casson nanofluid in the presence of bioconvective microorganisms over a spinning disc.

View Article and Find Full Text PDF

Purpose: The major cardiac voltage-gated sodium channel Na1.5 (I) is essential for cardiac action potential initiation and subsequent propagation. Compound Chinese medicine Wenxin Keli (WXKL) has been shown to suppress arrhythmias and heart failure.

View Article and Find Full Text PDF

In the pursuit of personalized medicine, there is a growing demand for computational models with parameters that are easily obtainable to accelerate the development of potential solutions. Blood tests, owing to their affordability, accessibility, and routine use in healthcare, offer valuable biomarkers for assessing hemostatic balance in thrombotic and bleeding disorders. Incorporating these biomarkers into computational models of blood coagulation is crucial for creating patient-specific models, which allow for the analysis of the influence of these biomarkers on clot formation.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!