Introduction: RANKL plays an important role in the differentiation and maturation process of preosteoclast cells. The osteoclast is a multinucleated cell that can have various sizes and a variable number of nuclei. However, there are no models that allow us to understand how successive cell fusions have a limit, or how cell fusion is regulated.
Methodology: The present investigation was aimed to determine whether fusing U937 cells with PEG to generate osteoclast-like cells expresses LGR4 and whether applying RANKL to these cells modifies osteoclastic activity compared to non-PEG-fused and RANKL-treated cells.
Results: By fusing U937 cells with PEG, it was found that the LGR4 receptor expression was promoted as early as 24 hours of culture. Applying RANKL before or after fusion inhibits osteoclastic activity. Interfering RANKL interaction with LGR4 in PEG-treated cells recovers and increases cell fusion and osteoclastic activity. PEG-fused U937 cells show osteoclast markers similar to those observed in the classical RANKL-stimulated cell model.
Conclusion: Our model allows us to understand that RANKL has fusogenic activity during the first days of culture and in fused cells modulates fusion, contributing to differentiate the role of RANKL before and after fusion through LGR4.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1080/03008207.2022.2090350 | DOI Listing |
Biol Direct
January 2025
Department of Clinical Laboratory, Affiliated Hangzhou First People's Hospital, School of Medicine, Westlake University, Hangzhou, Zhejiang, China.
Thioredoxin1 (TRX1) and telomerase are both attractive oncology targets that are tightly implicated in tumor initiation and development. Here, we reported that the 6-dithio-2-deoxyguanosine analog thiotert exhibits an effective cytotoxic effect on myelodysplastic syndromes (MDS) cell SKM-1 and lymphoma cell U-937. Further studies confirmed that thiotert effectively disrupts cellular redox homeostasis, as evidenced by elevated intracellular reactive oxygen species (ROS) levels, increased MnSOD, accelerated DNA impairment, and activated apoptosis signal.
View Article and Find Full Text PDFSci Rep
January 2025
Department of Medical Biotechnology, College of Biotechnology, Misr University for Science and Technology, P. O. Box 77, Giza, Egypt.
This study was designed to assess the effect of brentuximab vedotin on several breast cancer cell lines in terms of promoting apoptosis and managing cancer progression. Additionally, the study investigated the potential of repurposing this drug for new therapeutic reasons, beyond its original indications. The study evaluates the cytotoxic effects of Brentuximab vedotin across five cell lines: normal human skin fibroblasts (HSF), three breast cancer cell lines (MCF-7, MDA-MB-231, and T-47D), and histiocytic lymphoma (U-937).
View Article and Find Full Text PDFLiver Int
February 2025
Department of Medicine and Surgery, University of Perugia, Perugia, Italy.
Background And Aims: Primary sclerosing cholangitis (PSC) is a chronic cholestatic liver disease characterised by progressive biliary inflammation and fibrosis, leading to liver cirrhosis and cholangiocarcinoma. GPBAR1 (TGR5) is a G protein-coupled receptor for secondary bile acids. In this study, we have examined the therapeutic potential of BAR501, a selective GPBAR1 agonist in a PSC model.
View Article and Find Full Text PDFCancer Biol Ther
December 2025
Department of Hematology, Children's Hospital of Soochow University, Suzhou, China.
Cell cycle dysregulation and the corresponding metabolic reprogramming play significant roles in tumor development and progression. CDK9, a kinase that regulates gene transcription and cell cycle, also induces oncogene transcription and abnormal cell cycle in AML cells. The function of CDK9 for gene regulation in AML cells requires further exploration.
View Article and Find Full Text PDFSci Rep
January 2025
Institute of Molecular Life Sciences, HUN-REN Research Centre for Natural Sciences, Budapest, Hungary.
Cell cycle-dependent gene expression analysis is particularly important as numerous genes show tightly regulated expression patterns at different phases of the cell cycle. For cancer cells, analysis of cell cycle-related events is of paramount significance since tumorigenesis is characteristically coupled to cell cycle perturbations. RT-qPCR is a highly sensitive technique to investigate cell cycle-dependent transcriptional regulation.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!