Preparing Well-Defined Polyacrylamide-b-polycarbonate by Integrating Photoiniferter Polymerization and TBD-Catalyzed ROP.

Macromol Rapid Commun

State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, P. R. China.

Published: October 2022

The dual-initiator technique allows the polymerization of different monomers from orthogonal polymerization mechanisms to obtain block copolymers (BCPs). In this study, it is attempted to combine photoiniferter living free radical polymerization and organocatalytic ring-opening polymerization (ROP) to design a hydroxyl-functionalized carbamodithioate, i.e., 4-(hydroxymethyl)benzyl diethylcarbamodithioate (HBDC), which can integrate photoiniferter polymerization of acrylamide monomers and ROP of cyclic carbonates. As a proof of concept, the monomer applicability is further extended to acrylates and lactones. The results confirm that the two polymerization systems are experimentally compatible in a stepwise sequence as well as in a simultaneous one-pot process to synthesize BCPs. It is reasonable to assume that HBDC can allow for simple and efficient one-pot access to well-defined BCPs from a larger range of monomers, which is more advantageous from the operational, economical, and environmental points of view.

Download full-text PDF

Source
http://dx.doi.org/10.1002/marc.202200376DOI Listing

Publication Analysis

Top Keywords

photoiniferter polymerization
8
polymerization
7
preparing well-defined
4
well-defined polyacrylamide-b-polycarbonate
4
polyacrylamide-b-polycarbonate integrating
4
integrating photoiniferter
4
polymerization tbd-catalyzed
4
tbd-catalyzed rop
4
rop dual-initiator
4
dual-initiator technique
4

Similar Publications

Visible-Light Photo-Iniferter Polymerization of Molecularly Imprinted Polymers for Direct Integration with Nanotransducers.

Small Methods

January 2025

Laboratory of Analytical Chemistry, Department of Biological and Environmental Sciences and Technologies (Di.S.Te.B.A.), University of Salento, via Monteroni, Lecce, 73100, Italy.

Molecularly Imprinted Polymers (MIPs) have gained prominence as synthetic receptors, combining simplicity of synthesis with robust molecular recognition akin to antibodies and enzymes. One of their main application areas is chemical sensing. However, direct integration of MIPs with nanostructured transducers, crucial for enhancing sensing capabilities and broadening MIPs sensing applications, remains limited.

View Article and Find Full Text PDF

In this contribution, we designed a new xanthate RAFT agent by introducing (5,6,7,8-tetrahydro-2-naphthalenyl)oxy (TNO) as the Z group, namely 2-[(((5,6,7,8-Tetrahydro-2-naphthalenyl)oxycarbonothioyl)thio)ethyl propanoate] (TNXEP). Due to the presence of the TNO group, TNXEP enabled highly controlled and ultrafast photoiniferter RAFT polymerization under violet (λ=405 nm) and blue (λ=450 nm) light. This approach was effectively extended to aqueous media for polymerization-induced self-assembly (PISA), facilitating the synthesis of polymeric nanoparticles.

View Article and Find Full Text PDF

Anionic Oligo(ethylene glycol)-Based Molecular Brushes: Thermo- and pH-Responsive Properties.

Polymers (Basel)

December 2024

Research Laboratory "New Polymeric Materials", Nizhny Novgorod State Technical University, n.a. R.E. Alekseev, 24 Minin Street, 603155 Nizhny Novgorod, Nizhegorodskaya Oblast, Russia.

Anionic thermo- and pH-responsive copolymers were synthesized by photoiniferter reversible addition-fragmentation chain transfer polymerization (PI-RAFT). The thermo-responsive properties were provided by oligo(ethylene glycol)-based macromonomer units containing hydrophilic and hydrophobic moieties. The pH-responsive properties were enabled by the addition of 5-20 mol% of strong (2-acrylamido-2-methylpropanesulfonic) and weak (methacrylic) acids.

View Article and Find Full Text PDF

Acid-Enhanced Photoiniferter Polymerization under Visible Light.

Angew Chem Int Ed Engl

December 2024

Laboratory for Polymeric Materials, Department of Materials ETH Zurich, Vladimir-Prelog-Weg 5, 8093, Zurich, Switzerland.

Photoiniferter (PI) is a promising polymerization methodology, often used to overcome restrictions posed by thermal reversible addition-fragmentation chain-transfer (RAFT) polymerization. However, in the overwhelming majority of reports, high energy UV irradiation is required to effectively trigger photolysis of RAFT agents and facilitate the polymerization, significantly limiting its potential, scope, and applicability. Although visible light PI has emerged as a highly attractive alternative, most current approaches are limited to the synthesis of lower molecular weight polymers (i.

View Article and Find Full Text PDF

In this study, segmented hyperbranched copolymers with degradable and chain extendable cross-linker branch points were synthesized via green light-activated photoiniferter copolymerization of poly(ethylene glycol) methyl ether methacrylate (PEGMA) and a trithiocarbonate-derived dimethacrylate. A series of segmented hyperbranched copolymers with different degrees of branching were synthesized by changing the feed ratio of PEGMA to cross-linker to chain transfer agent. The segmented hyperbranched copolymers could be degraded into linear polymer chains by removing the trithocarbonate groups, which provides fundamental insights into the growth of primary chains during photoiniferter copolymerization.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!