The precise characterization of ultrashort laser pulses has been of interest to the scientific community for many years. Frequency-resolved optical gating (FROG) has been extensively used to retrieve the temporal and spectral field distributions of ultrashort laser pulses. In this work, we exploit the high, broad-band nonlinear optical response of a WS monolayer to simultaneously characterize two ultrashort laser pulses with different frequencies. The relaxed phase-matching conditions in a WS monolayer enable the simultaneous acquisition of the spectra resulting from both four-wave mixing (FWM) and sum-frequency generation (SFG) nonlinear processes while varying the time delay between the two ultrashort pulses. Next, we introduce an adjusted double-blind FROG algorithm, based on iterative fast Fourier transforms between two FROG traces, to extract the intensity distribution and phase of two ultrashort pulses from the combination of their FWM and SFG FROG traces. Using this algorithm, we find an agreement between the computed and observed FROG traces for both the FWM and SFG processes. Exploiting the broad-band nonlinear response of a WS monolayer, we additionally characterize one of the pulses using a second-harmonic generation (SHG) FROG trace to validate the pulse shapes extracted from the combination of the FWM and SFG FROG traces. The retrieved pulse shape from the SHG FROG agrees well with the pulse shape retrieved from our nondegenerate cross-correlation FROG measurement. In addition to the nonlinear parametric processes, we also observe a nonlinearly generated photoluminescence (PL) signal emitted from the WS monolayer. Because of its nonlinear origin, the PL signal can also be used to obtain complementary autocorrelation and cross-correlation traces.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9204806 | PMC |
http://dx.doi.org/10.1021/acsphotonics.1c01270 | DOI Listing |
Sci Rep
December 2024
College of A&F Engineering and Planning, Tongren University, Tongren, 554300, China.
The Wanshan mercury mining area (WMMA) in Guizhou Province, China, has been identified as a region at high ecological risk owing to heavy metal contamination. This study employed non-lethal sampling methods, using the phalanges of Pelophylax nigromaculatus in the WMMA as analytical material. Ten heavy metal (metalloid) elements were selected for analysis, including Hg, Cr, Mn, Ni, Cu, Zn, Cd, Pb, As, and Se.
View Article and Find Full Text PDFMol Cell Proteomics
December 2024
Department of Chemistry & Biochemistry, University of Maryland, College Park, MD 20742. Electronic address:
Detection of trace-sensitive signals is a current challenge in single-cell mass spectrometry (MS) proteomics. Separation prior to detection improves the fidelity and depth of proteome identification and quantification. We recently recognized capillary electrophoresis (CE) electrospray ionization (ESI) for ordering peptides into mass-to-charge (m/z)-dependent series, introducing electrophoresis-correlative (Eco) data-independent acquisition.
View Article and Find Full Text PDFCurr Biol
January 2025
Department of Biology, Stanford University, Stanford, CA 94305, USA; Sarafan ChEM-H, Stanford University, Stanford, CA 94305, USA. Electronic address:
Shifts in host-associated microbiomes can impact both host and microbes. It is of interest to understand how perturbations, like the introduction of exogenous chemicals, impact microbiomes. In poison frogs (family Dendrobatidae), the skin microbiome is exposed to alkaloids that the frogs sequester for defense.
View Article and Find Full Text PDFLight pulses in the femtosecond range require sophisticated methods for their precise temporal characterization. Several techniques have been developed over the past decades that deliver the temporal structure of ultrashort light pulses. Still, there are special cases left that cannot be treated directly by established methods.
View Article and Find Full Text PDFBioorg Chem
December 2024
The Research Center of Chiral Drugs, Innovation Research Institute of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai 201203, China. Electronic address:
N-methylation is a crucial post-modification process in natural product biosynthesis and also contributes to the metabolism of various physiological substances, such as neurotransmitter, hormone, and trace elements. In this study, we identified seven indolethylamine N-methyltransferase (INMT) family enzymes from the amphibian toad Bufo gargarizan with distinct catalytic properties. Among these enzymes, BNMT 1, BNMT 5, BNMT 6 and BNMT 7 exhibited notable promiscuity, demonstrating the ability to methylate multiple derivatives of indolethylamine, phenylethylamine, phenylethanolamine, and nicotinamide.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!