AI Article Synopsis

  • The study examined the effectiveness of a modified Kaiser score (KS+) and machine learning (ML) models in diagnosing benign versus malignant lesions using ADC values.
  • It involved a dataset of 659 lesions, with various ML algorithms tested against established KS and KS+ methods using ROC analysis.
  • Results indicated that while KS+ improved specificity, it slightly decreased sensitivity, suggesting that ML models considering ADC as a continuous variable may enhance diagnostic accuracy.

Article Abstract

Objectives: To evaluate the diagnostic performance of Kaiser score (KS) adjusted with the apparent diffusion coefficient (ADC) (KS+) and machine learning (ML) modeling.

Methods: A dataset of 402 malignant and 257 benign lesions was identified. Two radiologists assigned the KS. If a lesion with KS > 4 had ADC > 1.4 × 10 mm/s, the KS was reduced by 4 to become KS+. In order to consider the full spectrum of ADC as a continuous variable, the KS and ADC values were used to train diagnostic models using 5 ML algorithms. The performance was evaluated using the ROC analysis, compared by the DeLong test. The sensitivity, specificity, and accuracy achieved using the threshold of KS > 4, KS+ > 4, and ADC ≤ 1.4 × 10 mm/s were obtained and compared by the McNemar test.

Results: The ROC curves of KS, KS+, and all ML models had comparable AUC in the range of 0.883-0.921, significantly higher than that of ADC (0.837, p < 0.0001). The KS had sensitivity = 97.3% and specificity = 59.1%; and the KS+ had sensitivity = 95.5% with significantly improved specificity to 68.5% (p < 0.0001). However, when setting at the same sensitivity of 97.3%, KS+ could not improve specificity. In ML analysis, the logistic regression model had the best performance. At sensitivity = 97.3% and specificity = 65.3%, i.e., compared to KS, 16 false-positives may be avoided without affecting true cancer diagnosis (p = 0.0015).

Conclusion: Using dichotomized ADC to modify KS to KS+ can improve specificity, but at the price of lowered sensitivity. Machine learning algorithms may be applied to consider the ADC as a continuous variable to build more accurate diagnostic models.

Key Points: • When using ADC to modify the Kaiser score to KS+, the diagnostic specificity according to the results of two independent readers was improved by 9.4-9.7%, at the price of slightly degraded sensitivity by 1.5-1.8%, and overall had improved accuracy by 2.6-2.9%. • When the KS and the continuous ADC values were combined to train models by machine learning algorithms, the diagnostic specificity achieved by the logistic regression model could be significantly improved from 59.1 to 65.3% (p = 0.0015), while maintaining at the high sensitivity of KS = 97.3%, and thus, the results demonstrated the potential of ML modeling to further evaluate the contribution of ADC. • When setting the sensitivity at the same levels, the modified KS+ and the original KS have comparable specificity; therefore, KS+ with consideration of ADC may not offer much practical help, and the original KS without ADC remains as an excellent robust diagnostic method.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9815725PMC
http://dx.doi.org/10.1007/s00330-022-08899-wDOI Listing

Publication Analysis

Top Keywords

machine learning
16
sensitivity 973%
16
adc
14
kaiser score
12
ks+
10
sensitivity
9
specificity
9
adc continuous
8
continuous variable
8
adc values
8

Similar Publications

Automated Classification of Cardiac Arrhythmia using Short-Duration ECG Signals and Machine Learning.

Biomed Phys Eng Express

January 2025

Electronics and Communication Engineering, Rajiv Gandhi University, Rono Hills, Doimukh, ITANAGAR, Itanagar, Arunachal Pradesh, 791112, INDIA.

Accurate detection of cardiac arrhythmias is crucial for preventing premature deaths. The current study employs a dual-stage Discrete Wavelet Transform (DWT) and a median filter to eliminate noise from ECG signals. Subsequently, ECG signals are segmented, and QRS regions are extracted for further preprocessing.

View Article and Find Full Text PDF

Eutrophication is one of the most relevant concerns due to the risk to water supply and food security. Nitrogen and phosphorus chemical species concentrations determined the risk and magnitude of eutrophication. These analyses are even more relevant in basins with intensive agriculture due to agrochemical discharges.

View Article and Find Full Text PDF

Automated and Efficient Sampling of Chemical Reaction Space.

Adv Sci (Weinh)

January 2025

Department of Chemistry, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea.

Machine learning interatomic potentials (MLIPs) promise quantum-level accuracy at classical force field speeds, but their performance hinges on the quality and diversity of training data. An efficient and fully automated approach to sample chemical reaction space without relying on human intuition, addressing a critical gap in MLIP development is presented. The method combines the speed of tight-binding calculations with selective high-level refinement, generating diverse datasets that capture both equilibrium and reactive regions of potential energy surfaces.

View Article and Find Full Text PDF

The aim of this study is to address the limitations of convolutional networks in recognizing modulation patterns. These networks are unable to utilize temporal information effectively for feature extraction and modulation pattern recognition, resulting in inefficient modulation pattern recognition. To address this issue, a signal modulation recognition method based on a two-way interactive temporal attention network algorithm has been developed.

View Article and Find Full Text PDF

Soil spectroscopy is a widely used method for estimating soil properties that are important to environmental and agricultural monitoring. However, a bottleneck to its more widespread adoption is the need for establishing large reference datasets for training machine learning (ML) models, which are called soil spectral libraries (SSLs). Similarly, the prediction capacity of new samples is also subject to the number and diversity of soil types and conditions represented in the SSLs.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!