The ability of mitochondria to buffer a rapid rise in cytosolic Ca is a hallmark of proper cell homeostasis. Here, we employed m-3M3FBS, a putative phospholipase C (PLC) agonist, to explore the relationships between intracellular Ca imbalance, mitochondrial physiology, and cell death. m-3M3FBS induced a potent dose-dependent Ca release from the endoplasmic reticulum (ER), followed by a rise in intra-mitochondrial Ca. When the latter exceeded the organelle buffering capacity, an abrupt mitochondrial inner membrane permeabilization (MIMP) occurred, releasing matrix contents into the cytosol. MIMP was followed by cell death that was independent of Bcl-2 family members and inhibitable by the intracellular Ca chelator BAPTA-AM. Cyclosporin A (CsA), capable of blocking the mitochondrial permeability transition (MPT), completely prevented cell death induced by m-3M3FBS. However, CsA acted upstream of mitochondria by preventing Ca release from ER stores. Therefore, loss of Ca intracellular balance and mitochondrial Ca overload followed by MIMP induced a cell death process that is distinct from Bcl-2 family-regulated mitochondrial outer membrane permeabilization (MOMP). Further, the inhibition of cell death by CsA or its analogues can be independent of effects on the MPT.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9287385PMC
http://dx.doi.org/10.1038/s41418-022-01025-9DOI Listing

Publication Analysis

Top Keywords

cell death
24
membrane permeabilization
12
mitochondrial inner
8
inner membrane
8
cell
7
death
6
mitochondrial
5
ca-mediated mitochondrial
4
permeabilization induces
4
induces cell
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!