Sleep is a key factor in memory consolidation. During sleep, information is reactivated, transferred, and redistributed to neocortical areas, thus favoring memory consolidation and integration. Although these reactivations occur spontaneously, they can also be induced using external cues, such as sound or odor cues, linked to the acquired information. Hence, targeted memory reactivation during sleep represents an advantageous tool for improving memory consolidation in real-life settings. In this study, our goal was to improve the consolidation of complex information such as that of a history lesson, using a school study session in the presence of an odor, and a reactivation round while sleeping at home on the same night of the acquisition, without using additional study sessions. We found that complex information can be associated with an odor in the classroom and that one session of reactivation during the first night of sleep in the students' houses improves its consolidation. These results bring new evidence for the implementation of reactivation during sleep in real-life settings.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9208245 | PMC |
http://dx.doi.org/10.1038/s41598-022-14588-x | DOI Listing |
Sleep Adv
December 2024
Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA.
Study Objectives: Sleep spindles, defining electroencephalographic oscillations of nonrapid eye movement (NREM) stage 2 sleep (N2), mediate sleep-dependent memory consolidation (SDMC). Spindles are also thought to protect sleep continuity by suppressing thalamocortical sensory relay. Schizophrenia is characterized by spindle deficits and a correlated reduction of SDMC.
View Article and Find Full Text PDFInflammopharmacology
January 2025
Department of Pharmacology, Central University of Punjab, Bathinda, 151001, Punjab, India.
Alzheimer's Disease (AD), a progressive and age-associated neurodegenerative disorder, is primarily characterized by amyloid-beta (Aβ) plaques and neurofibrillary tangles. Despite advances in targeting Aβ-mediated neuronal damage with anti-Aβ antibodies, these treatments provide only symptomatic relief and fail to address the multifactorial pathology of the disease. This necessitates the exploration of novel therapeutic approaches and a deeper understanding of molecular signaling mechanisms underlying AD.
View Article and Find Full Text PDFBMC Med Educ
January 2025
Department of Clinical Pharmacy, College of Pharmacy, King Khalid University, Abha, Saudi Arabia.
Background: Sleep is an active process that affects human health and quality of life. Sleep is essential for learning and memory consolidation. Good sleep is required for good academic performance.
View Article and Find Full Text PDFExp Neurol
January 2025
Department of Anesthesiology and Pain Medicine, Anesthesia and Pain Research Institute, Yonsei University College of Medicine, Seoul, Republic of Korea. Electronic address:
Perioperative neurocognitive disorders (PNDs) refer to a wide spectrum of cognitive impairment persisting days to even after a year postoperative with significant morbidity and mortality. However, despite much efforts involving perioperative managements, PNDs are still prevalent with no standard preventative and therapeutic strategy. To overcome PNDs, a better understanding of pathophysiology of PNDs is crucial and a large number of studies have proven that immune-inflammatory responses from surgical stress are involved in the abnormal activation of the hypothalamic-pituitary-adrenal (HPA) axis and destabilization of neurovascular unit (NVU) that lead to PNDs.
View Article and Find Full Text PDFNeurology
January 2025
Department of Neurology, Massachusetts General Hospital, Boston.
Background And Objectives: Rolandic epilepsy (RE), the most common childhood focal epilepsy syndrome, is characterized by a transient period of sleep-activated epileptiform activity in the centrotemporal regions and variable cognitive deficits. Sleep spindles are prominent thalamocortical brain oscillations during sleep that have been mechanistically linked to sleep-dependent memory consolidation in animal models and healthy controls. Sleep spindles are decreased in RE and related sleep-activated epileptic encephalopathies.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!