Topologically associating domains (TADs) are fundamental building blocks of three dimensional genome, and organized into complex hierarchies. Identifying hierarchical TADs on Hi-C data helps to understand the relationship between genome architectures and gene regulation. Herein we propose TADfit, a multivariate linear regression model for profiling hierarchical chromatin domains, which tries to fit the interaction frequencies in Hi-C contact matrix with and without replicates using all-possible hierarchical TADs, and the significant ones can be determined by the regression coefficients obtained with the help of an online learning solver called Follow-The-Regularized-Leader (FTRL). Beyond the existing methods, TADfit has an ability to handle multiple contact matrix replicates and find partially overlapping TADs on them, which helps to find the comprehensive underlying TADs across replicates from different experiments. The comparative results tell that TADfit has better accuracy and reproducibility, and the hierarchical TADs called by it exhibit a reasonable biological relevance.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9209495 | PMC |
http://dx.doi.org/10.1038/s42003-022-03546-y | DOI Listing |
Nucleic Acids Res
January 2025
Department of Orthopaedics and Traumatology, Li Ka Shing Institute of Health Sciences, Chinese University of Hong Kong, Hong Kong SAR, China.
Mammalian genome is hierarchically organized by CTCF and cohesin through loop extrusion mechanism to facilitate the organization of topologically associating domains (TADs). Mounting evidence suggests additional factors/mechanisms exist to orchestrate TAD formation and maintenance. In this study, we investigate the potential role of RNA-binding proteins (RBPs) in TAD organization.
View Article and Find Full Text PDFBMC Genomics
December 2024
Department of Chemistry & Biochemistry, University of Colorado Colorado Springs, Colorado Springs, CO, 80918, USA.
Background: Organization of the eukaryotic genome is essential for proper function, including gene expression. In metazoans, chromatin loops and Topologically Associated Domains (TADs) organize genes into transcription factories, while chromosomes occupy nuclear territories in which silent heterochromatin is compartmentalized at the nuclear periphery and active euchromatin localizes to the nucleus center. A similar hierarchical organization occurs in the fungus Neurospora crassa where its seven chromosomes form a Rabl conformation typified by heterochromatic centromeres and telomeres independently clustering at the nuclear membrane, while interspersed heterochromatic loci aggregate across Megabases of linear genomic distance to loop chromatin in TAD-like structures.
View Article and Find Full Text PDFGenome Biol
December 2024
College of Informatics, Huazhong Agricultural University, Wuhan, China.
Topologically associating domains (TADs) are essential units of genome architecture, influencing transcriptional regulation and diseases. Despite numerous methods proposed for TAD identification, it remains challenging due to complex background and nested TAD structures. We introduce HTAD, a human-in-the-loop TAD caller that combines machine learning with human supervision to achieve high accuracy.
View Article and Find Full Text PDFBiomedicines
November 2024
Department of Neurosurgery, Brown University, Rhode Island Hospital, Providence, RI 02903, USA.
: Schwann cells (SCs) and their plasticity contribute to the peripheral nervous system's capacity for nerve regeneration after injury. The promoter antisense RNA (Egr2-AS) recruits chromatin remodeling complexes to inhibit transcription following peripheral nerve injury. : RNA-seq and ATAC-seq were performed on control cells, Lenti-GFP-transduced cells, and cells overexpressing Egr2-AS (Lenti-AS).
View Article and Find Full Text PDFbioRxiv
October 2024
Department of Chemistry & Biochemistry, University of Colorado Colorado Springs, Colorado Springs, CO 80918, USA.
Background: Organization of the eukaryotic genome is essential for proper function, including gene expression. In metazoans, chromatin loops and Topologically Associated Domains (TADs) organize genes into transcription factories, while chromosomes occupy nuclear territories in which silent heterochromatin is compartmentalized at the nuclear periphery and active euchromatin localizes to the nucleus center. A similar hierarchical organization occurs in the fungus where its seven chromosomes form a Rabl conformation typified by heterochromatic centromeres and telomeres independently clustering at the nuclear membrane, while interspersed heterochromatic loci aggregate across Megabases of linear genomic distance to loop chromatin in TAD-like structures.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!