Chinese adult brain atlas with functional and white matter parcellation.

Sci Data

Department of Biomedical Engineering, National University of Singapore, Singapore, Singapore.

Published: June 2022

Brain atlases play important roles in studying anatomy and function of the brain. As increasing interests in multi-modal magnetic resonance imaging (MRI) approaches, such as combining structural MRI, diffusion weighted imaging (DWI), and resting-state functional MRI (rs-fMRI), there is a need to construct integrated brain atlases based on these three imaging modalities. This study constructed a multi-modal brain atlas for a Chinese aging population (n = 180, age: 22-79 years), which consists of a T1 atlas showing the brain morphology, a high angular resolution diffusion imaging (HARDI) atlas delineating the complex fiber architecture, and a rs-fMRI atlas reflecting brain intrinsic functional organization in one stereotaxic coordinate. We employed large deformation diffeomorphic metric mapping (LDDMM) and unbiased diffeomorphic atlas generation to simultaneously generate the T1 and HARDI atlases. Using spectral clustering, we generated 20 brain functional networks from rs-fMRI data. We demonstrated the use of the atlas to explore the coherent markers among the brain morphology, functional networks, and white matter tracts for aging and gender using joint independent component analysis.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9209432PMC
http://dx.doi.org/10.1038/s41597-022-01476-2DOI Listing

Publication Analysis

Top Keywords

brain
9
brain atlas
8
white matter
8
brain atlases
8
brain morphology
8
functional networks
8
atlas
7
functional
5
chinese adult
4
adult brain
4

Similar Publications

Introduction: Alzheimer's disease (AD) in Down syndrome (DS) is associated with changes in brain structure. It is unknown if thickness and volumetric changes can identify AD stages and if they are similar to other genetic forms of AD.

Methods: Magnetic resonance imaging scans were collected for 178 DS adults (106 nonclinical, 45 preclinical, and 27 symptomatic).

View Article and Find Full Text PDF

Glucose Transporter 1 Deficiency Impairs Glucose Metabolism and Barrier Induction in Human Induced Pluripotent Stem Cell-Derived Astrocytes.

J Cell Physiol

January 2025

Department of Pharmaceutical Sciences and Center for Blood-Brain Barrier Research, Jerry H. Hodge School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, Texas, USA.

Glucose is a major source of energy for the brain. At the blood-brain barrier (BBB), glucose uptake is facilitated by glucose transporter 1 (GLUT1). GLUT1 Deficiency Syndrome (GLUT1DS), a haploinsufficiency affecting SLC2A1, reduces glucose brain uptake.

View Article and Find Full Text PDF

Low-grade gliomas and reactive piloid gliosis can present with overlapping features on conventional histology. Given the large implications for patient treatment, there is a need for effective methods to discriminate these morphologically similar but clinically distinct entities. Using routinely available stains, we hypothesize that a limited panel including SOX10, p16, and cyclin D1 may be useful in differentiating mitogen-activated protein (MAP) kinase-activated low-grade gliomas from piloid gliosis.

View Article and Find Full Text PDF

Background: We still know little about the effective pharmacological treatment of heart failure (HF) associated with the Fontan circulation. One of the new options may be sodium glucose cotransporter-2 inhibitors (SGLT2i), which have been proven effective in classic forms of left ventricular HF.

Objectives: To evaluate the effect and safety of SGLT2i inclusion in adults with Fontan circulation.

View Article and Find Full Text PDF

Introduction: Cerebrovascular dysfunction plays a critical role in the pathogenesis of dementia and related neurodegenerative disorders. Recent omics-driven research has revealed associations between vascular abnormalities and transcriptomic alterations in brain vascular cells, particularly endothelial cells (ECs) and pericytes (PCs). However, the impact of these molecular changes on dementia remains unclear.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!