Conformational changes in macromolecules significantly affect their functions and assembly into high-level structures. Despite advances in theoretical and experimental studies, investigations into the intrinsic conformational variations and dynamic motions of single macromolecules remain challenging. Here, liquid-phase transmission electron microscopy enables the real-time tracking of single-chain polymers. Imaging linear polymers, synthetically dendronized with conjugated aromatic groups, in organic solvent confined within graphene liquid cells, directly exhibits chain-resolved conformational dynamics of individual semiflexible polymers. These experimental and theoretical analyses reveal that the dynamic conformational transitions of the single-chain polymer originate from the degree of intrachain interactions. In situ observations also show that such dynamics of the single-chain polymer are significantly affected by environmental factors, including surfaces and interfaces.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/adma.202202353 | DOI Listing |
Chem Commun (Camb)
December 2024
Institute of Chemistry, Faculty of Natural Science II, Martin Luther University Halle-Wittenberg, von-Danckelmann-Platz 4, D-06120, Halle (Saale), Germany.
Single-chain nanoparticles (SCNPs) are generated by intramolecular collapse and crosslinking of single polymer chains, thus conceptually resembling the structures of folded proteins. Their chemical flexibility and ability to form compartmentalised nanostructures sized ∼1 nm make them perfect candidates for numerous applications, such as in catalysis and drug delivery. In this review we discuss principles for the design, synthesis and analysis of SCNPs, with a focus on their compartmentalised structures, highlighting our own previous work.
View Article and Find Full Text PDFJ Mater Chem B
December 2024
School of Chemistry, University of New South Wales, Sydney, New South Wales 2052, Australia.
The successful delivery of nanoparticles (NPs) to cancer cells is dependent on various factors, including particle size, shape, surface properties such as hydrophobicity/hydrophilicity, charges, and functional moieties. Tailoring these properties has been explored extensively to enhance the efficacy of NPs for drug delivery. Single-chain polymer nanoparticles (SCNPs), notable for their small size (sub-20 nm) and tunable properties, are emerging as a promising platform for drug delivery.
View Article and Find Full Text PDFJ Immunol Methods
November 2024
Faculty of Molecular Chemistry and Engineering, Kyoto Institute of Technology, Kyoto, Japan. Electronic address:
Most of currently available sandwich-type enzyme-linked immunosorbent assays (ELISA) require the use of full-length animal-derived antibodies which poses welfare criticisms and are often expensive to produce. There is therefore a strong demand for the development of more affordable and animal-free methods to produce antibodies for sandwich ELISA assay. To address these issues, we propose here the development of a new technology based on two complementary rabbit single-chain variable fragments (scFvs) and an Ig-binding domain of protein L (PpL1) fused to a polystyrene-binding peptide (PS-tag) that can be recombinantly produced in bacteria.
View Article and Find Full Text PDFACS Appl Mater Interfaces
November 2024
School of Chemistry, University of New South Wales, Sydney, New South Wales 2052, Australia.
J Colloid Interface Sci
February 2025
Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, PR China; School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, Anhui 230026, PR China. Electronic address:
Improving drug delivery efficacy is the key point for enhancing the therapeutic index of medicines. Herein, we report fatty chain conjugated paclitaxel (PTX) prodrugs with a disulfide bond as linker. The formed prodrugs can self-assemble into stable nanoparticles in aqueous solutions, and rapidly transform into long-circulating nanocomplexes via the non-covalent binding to serum albumin in blood, enabling efficient drug delivery and robust antitumor effect.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!