Conformational changes in macromolecules significantly affect their functions and assembly into high-level structures. Despite advances in theoretical and experimental studies, investigations into the intrinsic conformational variations and dynamic motions of single macromolecules remain challenging. Here, liquid-phase transmission electron microscopy enables the real-time tracking of single-chain polymers. Imaging linear polymers, synthetically dendronized with conjugated aromatic groups, in organic solvent confined within graphene liquid cells, directly exhibits chain-resolved conformational dynamics of individual semiflexible polymers. These experimental and theoretical analyses reveal that the dynamic conformational transitions of the single-chain polymer originate from the degree of intrachain interactions. In situ observations also show that such dynamics of the single-chain polymer are significantly affected by environmental factors, including surfaces and interfaces.

Download full-text PDF

Source
http://dx.doi.org/10.1002/adma.202202353DOI Listing

Publication Analysis

Top Keywords

single-chain polymer
8
conformation dynamics
4
dynamics single
4
single polymer
4
polymer strands
4
strands solution
4
conformational
4
solution conformational
4
conformational changes
4
changes macromolecules
4

Similar Publications

Compartmentalised single-chain nanoparticles and their function.

Chem Commun (Camb)

December 2024

Institute of Chemistry, Faculty of Natural Science II, Martin Luther University Halle-Wittenberg, von-Danckelmann-Platz 4, D-06120, Halle (Saale), Germany.

Single-chain nanoparticles (SCNPs) are generated by intramolecular collapse and crosslinking of single polymer chains, thus conceptually resembling the structures of folded proteins. Their chemical flexibility and ability to form compartmentalised nanostructures sized ∼1 nm make them perfect candidates for numerous applications, such as in catalysis and drug delivery. In this review we discuss principles for the design, synthesis and analysis of SCNPs, with a focus on their compartmentalised structures, highlighting our own previous work.

View Article and Find Full Text PDF

The successful delivery of nanoparticles (NPs) to cancer cells is dependent on various factors, including particle size, shape, surface properties such as hydrophobicity/hydrophilicity, charges, and functional moieties. Tailoring these properties has been explored extensively to enhance the efficacy of NPs for drug delivery. Single-chain polymer nanoparticles (SCNPs), notable for their small size (sub-20 nm) and tunable properties, are emerging as a promising platform for drug delivery.

View Article and Find Full Text PDF

Most of currently available sandwich-type enzyme-linked immunosorbent assays (ELISA) require the use of full-length animal-derived antibodies which poses welfare criticisms and are often expensive to produce. There is therefore a strong demand for the development of more affordable and animal-free methods to produce antibodies for sandwich ELISA assay. To address these issues, we propose here the development of a new technology based on two complementary rabbit single-chain variable fragments (scFvs) and an Ig-binding domain of protein L (PpL1) fused to a polystyrene-binding peptide (PS-tag) that can be recombinantly produced in bacteria.

View Article and Find Full Text PDF
Article Synopsis
  • - This study compares polymeric micelles and single-chain nanoparticles (SCNPs) as drug delivery systems, focusing on their internalization by breast cancer cells and macrophages.
  • - Researchers synthesized various copolymers and analyzed how the solvent impacts the self-assembly and resultant structure of these nanoparticles, emphasizing the role of solvent in photocross-linking.
  • - The findings revealed that using acetonitrile for cross-linking resulted in better-defined nanoparticles with higher cellular uptake and identified passive transport as the primary mechanism for delivery into MCF-7 cells.
View Article and Find Full Text PDF

Paclitaxel prodrug nanoparticles boost antitumor efficacy via hitchhiking of human serum albumin.

J Colloid Interface Sci

February 2025

Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, PR China; School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, Anhui 230026, PR China. Electronic address:

Improving drug delivery efficacy is the key point for enhancing the therapeutic index of medicines. Herein, we report fatty chain conjugated paclitaxel (PTX) prodrugs with a disulfide bond as linker. The formed prodrugs can self-assemble into stable nanoparticles in aqueous solutions, and rapidly transform into long-circulating nanocomplexes via the non-covalent binding to serum albumin in blood, enabling efficient drug delivery and robust antitumor effect.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!