With the increasing need for hydrogels with tunable properties for specific biomedical applications, a complete understanding of the structure-function relationship of polymers used for hydrogel development remains crucial for their optimal use. In the present study, by combining experimental and theoretical approaches, the structure-function relationship of a bacterial exopolysaccharide, infernan, displaying both glycosaminoglycan-mimetic and gelling properties, was investigated at molecular and microscopic levels. Atomic force microscopy (AFM) experiments and molecular dynamics simulations were applied to determine the persistence length of individual infernan chains before studying their association induced by calcium. Infernan-based microgels were then produced using microfluidics and their mechanical properties were characterized by AFM methods. The mechanical properties of EPS/calcium microgels were finely tuned by varying the crosslinking density of their network, either by calcium or EPS concentrations. The obtained set of viscoelastic microgels with different elastic modulus values opens several possibilities for their applications in tissue engineering.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.carbpol.2022.119629DOI Listing

Publication Analysis

Top Keywords

mechanical properties
12
structure-function relationship
8
properties
5
interactions infernan
4
infernan calcium
4
calcium molecular
4
molecular level
4
level mechanical
4
microgels
4
properties microgels
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!