The scale-up preparation of aramid nanofiber (ANF) and cellulose nanofiber (CNF), still faces serious challenges such as extreme production cost and lengthy preparation cycle. Herein, a feasible top-down strategy was proposed to achieve the efficient reclamation of waste resources, further realizing the large-scale production of high value-added nanofibers. The ANF/CNF as nanoscale building blocks and their reinforcement effects on the mechanical performances of carbon fiber/phenolic composites were investigated. Related strength and modulus of ANF/CNF-enhanced composites in the tensile, bending, shear and nano indentation tests, increased by 118.1% (tensile strength), 141.2% (tensile modulus), 142.2% (flexural strength), 354.4% (flexural modulus), 38.8% (shear strength) and 94.4% (elastic modulus), respectively. Our work offers a valuable reference in the fabrication of low-cost ANF/CNF derived from waste resources, which would facilitate the wide application of nanofibers in fabricating high-performance advanced functional materials.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.carbpol.2022.119712 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!