Contributions of the GABAergic system of the prelimbic cortex and basolateral amygdala to morphine withdrawal-induced contextual fear.

Physiol Behav

Departamento de Psicologia, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo (USP), 14040-901 Ribeirão Preto, SP, Brasil; Departamento de Psicologia, Uni-FACEF, 14401-135, Franca, SP, Brasil. Electronic address:

Published: October 2022

AI Article Synopsis

Article Abstract

Morphine withdrawal can trigger disruptions in neuronal pathways involved in the modulation and expression of anxiety and fear-related behaviors, particularly those involved in associative learning. When it comes to contextual fear, specific subdivisions of the medial prefrontal cortex (mPFC) regulate the expression of defensive behaviors through projections to specific amygdala (AM) nuclei, such as the prelimbic cortex (PrL). The basolateral nucleus (BLA) of the AM has been shown to be involved in the modulation and expression of associative memories of fear, including those associated with opiate withdrawal-related aversive events. The purpose of this study is to determine the role of GABA mechanisms in the PrL and BLA in startle potentiation and freezing behavior caused by morphine-precipitated withdrawal. Our findings show that morphine withdrawal promotes the emergence of contextual conditioned fear in animals when they are exposed to the same environment where the withdrawal sessions were performed. This suggests that the neural circuits underlying the organism's response to conditioned stressors and the circuits modulating the negative affective states induced by drug withdrawal may overlap. The pharmacological manipulation of GABAergic neurotransmission in the PrL and BLA can reverse contextual fear in morphine-withdrawn rats, an effect that appears to be mediated, at least in part, by GABA receptors.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.physbeh.2022.113868DOI Listing

Publication Analysis

Top Keywords

contextual fear
12
prelimbic cortex
8
morphine withdrawal
8
involved modulation
8
modulation expression
8
prl bla
8
fear
5
withdrawal
5
contributions gabaergic
4
gabaergic system
4

Similar Publications

Epigenetics in Learning and Memory.

Subcell Biochem

January 2025

Faculty of Medicine and Faculty of Life Sciences, Institute of Biomedical Sciences (ICB), Universidad Andres Bello, Santiago, Chile.

In animals, memory formation and recall are essential for their survival and for adaptations to a complex and often dynamically changing environment. During memory formation, experiences prompt the activation of a selected and sparse population of cells (engram cells) that undergo persistent physical and/or chemical changes allowing long-term memory formation, which can last for decades. Over the past few decades, important progress has been made on elucidating signaling mechanisms by which synaptic transmission leads to the induction of activity-dependent gene regulation programs during the different phases of learning (acquisition, consolidation, and recall).

View Article and Find Full Text PDF

Objective: Cervical cancer remains the most diagnosed and deadly cancer among women in low and middle income countries, including Ethiopia, although it can be controlled if detected and treated early. However, research on contextual barriers to early diagnosis and treatment of cervical cancer is limited in Ethiopia. This study aimed to describe the lived experience of the patients and to explore the barriers to early diagnosis and treatment of cervical cancer.

View Article and Find Full Text PDF

The meat processing industry was significantly impacted by the COVID-19 pandemic. Deemed essential, the meat processing workforce faced the risk of exposure to the SARS-CoV-2 virus. Along with other essential workforces, meat processing workers were prioritized in the national approach to receive COVID-19 vaccines by the Centers for Disease Control and Prevention Advisory Committee on Immunization Practices.

View Article and Find Full Text PDF

Cd99l2 regulates excitatory synapse development and restrains immediate-early gene activation.

Cell Rep

January 2025

Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul 03080, South Korea; Neuroscience Research Institute, Medical Research Center, Seoul National University, Seoul 03080, South Korea; Transplantation Research Institute, Medical Research Center, Seoul National University, Seoul 03080, South Korea. Electronic address:

Cd99 molecule-like 2 (Cd99l2) is a type I transmembrane protein that plays a role in the transmigration of leukocytes across vascular endothelial cells. Despite its high expression in the brain, the role of Cd99l2 remains elusive. We find that Cd99l2 is expressed primarily in neurons and positively regulates neurite outgrowth and the development of excitatory synapses.

View Article and Find Full Text PDF

People living with HIV (PLWH) experience HIV-associated neurocognitive disorders (HAND), even though combination antiretroviral therapy (cART) suppresses HIV replication. HIV-1 transactivator of transcription (HIV-1 Tat) contributes to the development of HAND through neuroinflammatory and neurotoxic mechanisms. C-C chemokine 5 receptor (CCR5) is important in immune cell targeting and is a co-receptor for HIV viral entry into CD4+ cells.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!