The development of nanotechnology-based antibiotic delivery systems (nanoantibiotics) is an important challenge in the effort to combat microbial multidrug resistance. These systems have improved biopharmaceutical characteristics by increasing local bioavailability and reducing systemic toxicity and the number and frequency of drug side effects. Conjugation of low -molecular -weight antibacterial agents with natural polysaccharides is an effective strategy for developing optimal targeted delivery systems with programmed release and reduced cytotoxicity. This study describes the synthesis of conjugates of colistin (CT) and hyaluronic acid (HA) using carbodiimide chemistry to conjugate the amino groups of CT with the carboxyl groups of HA. The obtained polysaccharide carriers had a degree of substitution (DS) with CT molecules of 3-10 %, and the CT content was 129-377 μg/mg. The size of the fabricated particles was 300-600 nm; in addition, there were conjugates in the form of single macromolecules (30-50 nm). The ζ-potential of developed systems was about -20 mV. In vitro release studies at pH 7.4 and pH 5.2 showed slow hydrolysis of amide bonds, with a CT release of 1-5 % after 24 h. The conjugates retained antimicrobial activity depending on the DS: at DS 8 %, the minimum inhibitory concentration (MIC) of the conjugate corresponded to the MIC of free CT. The resulting systems also reduced CT nephrotoxicity by 20-50 %. These new conjugates of CT with HA are promising for the development of nanodrugs for safe and effective antimicrobial therapy.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ijbiomac.2022.06.080DOI Listing

Publication Analysis

Top Keywords

delivery systems
8
systems
5
hyaluronan-colistin conjugates
4
conjugates synthesis
4
synthesis characterization
4
characterization prospects
4
prospects medical
4
medical applications
4
applications development
4
development nanotechnology-based
4

Similar Publications

Background: The recent global pandemic posed extraordinary challenges for healthcare systems. Frontline healthcare workers required focused, immediate, practical, evidence-based instruction on optimal patient care modalities as knowledge evolved around disease management.

Objective: This course was designed to provide knowledge to protect healthcare workers; combat disease spread; and improve patient outcomes.

View Article and Find Full Text PDF

Extracellular vesicles (EVs) are widely investigated for their implications in cell-cell signaling, immune modulation, disease pathogenesis, cancer, regenerative medicine, and as a potential drug delivery vector. However, maintaining integrity and bioactivity of EVs between Good Manufacturing Practice separation/filtration and end-user application remains a consistent bottleneck towards commercialization. Milk-derived extracellular vesicles (mEVs), separated from bovine milk, could provide a relatively low-cost, scalable platform for large-scale mEV production; however, the reliance on cold supply chain for storage remains a logistical and financial burden for biologics that are unstable at room temperature.

View Article and Find Full Text PDF

This review highlights recent progress in exosome-based drug delivery for cancer therapy, covering exosome biogenesis, cargo selection mechanisms, and their application across multiple cancer types. As small extracellular vesicles, exosomes exhibit high biocompatibility and low immunogenicity, making them ideal drug delivery vehicles capable of efficiently targeting cancer cells, minimizing off-target damage and side effects. This review aims to explore the potential of exosomes in cancer therapy, with a focus on applications in chemotherapy, gene therapy, and immunomodulation.

View Article and Find Full Text PDF

Colorectal cancer (CRC) is the third most prevalent malignancy and the second leading cause of cancer-related mortality worldwide, with an increasing shift towards younger age of onset. In recent years, there has been increasing recognition of the significance of tRNA-derived small RNAs (tsRNAs), encompassing tRNA-derived fragments (tRFs) and tRNA halves (tiRNAs). Their involvement in regulating translation, gene expression, reverse transcription, and epigenetics has gradually come to light.

View Article and Find Full Text PDF

Background: Most patients with prostate cancer inevitably progress to castration-resistant prostate cancer (CRPC), at which stage chemotherapeutics like docetaxel become the first-line treatment. However, chemotherapy resistance typically develops after an initial period of therapeutic efficacy. Increasing evidence indicates that cancer stem cells confer chemotherapy resistance via exosomes.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!