A novel nanocomposite, named as nZVI@LH, was prepared by nanoscale zero-valent iron (nZVI) supported on lignin hydrogel and was used in the remediation of Cr(VI)-contaminated soil collected from an industrial site. Meanwhile, scanning electron microscopy with energy dispersive X-ray (SEM-EDX) and X-ray diffractometry (XRD) results determined that nZVI nanoparticles disperse uniformly on hydrogel. After the 14 days remediation, the immobilization efficiency of Cr(VI) could reach over 87% in the treatment of 3% (w/w%) nZVI@LH and 26% in the treatment of bare-nZVI. Leaching experiment results showed that the treatment group with 3% (w/w%) nZVI@LH was up to the national leaching toxicity identification standard, and there was no threat in simulation of acid rain over the long term. The water-soluble (WS) fraction in 3 nZVI@LH treatment decreased 31.1%, while the Fe-Mn oxide bound (OX) fraction and organic matter-bound (OM) fraction increased 10.9% and 13.4%, respectively. Moreover, nZVI@LH had limited impact on soil properties and the capability to immobilize Cr over a long period exposure to acid rain. This work prove that nZVI@LH has the potential to remediate Cr contaminated soil. Furthermore, details of possible mechanistic insight into the Cr remediation were carefully discussed.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.chemosphere.2022.135393 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!