High-angle annular dark-field scanning transmission electron microscopy (HAADF-STEM) is a valuable method for composition determination of nanomaterials. However, light elements do not scatter efficiently into the scattering angles employed for HAADF-STEM which hinders the composition determination of material systems containing light elements by HAADF-STEM. This makes the usage of lower scattering angles favourable. Moreover, static atomic displacements (SADs) caused by the small covalent radius of the substituting light elements in semiconductor alloys increase the scattering intensity at low angles. Nevertheless, at low angles, a quantitative match between complementary image simulations and experiments is not straight forward, since e.g. inelastic scattering and correlated phonon movement is often neglected in simulations. In this study, we establish a method to quantify material systems containing light elements at low angles by resolving the remaining sources of discrepancy. An outstanding agreement between simulations and experiments is achieved by using a combination of an in-column energy filter and a fast pixelated detector. By applying this method to GaNAs quantum wells, a good agreement of the TEM results with results from high-resolution x-ray diffraction is obtained. The method developed enables the nanoscale analysis of functional materials containing light elements, especially in the presence of SADs.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.ultramic.2022.113550 | DOI Listing |
Nat Neurosci
January 2025
Institute of Neuronal Cell Biology, Technical University Munich, Munich, Germany.
Our understanding of Alzheimer's disease (AD) has transformed from a purely neuronal perspective to one that acknowledges the involvement of glial cells. Despite remarkable progress in unraveling the biology of microglia, astrocytes and vascular elements, the exploration of oligodendrocytes in AD is still in its early stages. Contrary to the traditional notion of oligodendrocytes as passive bystanders in AD pathology, emerging evidence indicates their active participation in and reaction to amyloid and tau pathology.
View Article and Find Full Text PDFJ Am Chem Soc
January 2025
Department of Chemistry and Engineering Research Center of Advanced Rare-Earth Materials of Ministry of Education, Tsinghua University, Beijing 100084, China.
The reduction of CO mediated by transition metals has garnered significant interest, yet little is known about the reduction of CO using f-element compounds. Herein, the reduction of CO to CO by tetravalent uranium (U) compound UO is investigated via matrix isolation infrared spectroscopy and quantum chemical study. Our results reveal that a stable carbonate intermediate OUCO () can be prepared at low temperatures (4-12 K).
View Article and Find Full Text PDFJ Oleo Sci
January 2025
Graduate School of Science and Technology, Kumamoto University.
Near-infrared wavelength-selective soft actuators have attracted much attention for applications in microsystems in bioliving. It is desirable for the photothermal conversion materials in the actuators to be downsized to the molecular scale. However, in conventional actuator materials using copolymer gels composed of thermosensitive and photothermal conversion molecule-coordinated monomers, the strong cross-linking of molecules in the networks impairs the actuator deformation.
View Article and Find Full Text PDFRedox Biol
January 2025
Redox Biology Group, Danish Cancer Institute, 2100, Copenhagen, Denmark. Electronic address:
Focal adhesions (FAs), multi-protein complexes that link the extracellular matrix to the intracellular cytoskeleton, are key mediators of cell adhesion, migration, and proliferation. These dynamic structures act as mechanical sensors, transmitting stimuli from the extracellular to intracellular environment activating in this way signaling pathways and enabling cells to adapt to environmental changes. As such, FAs are critical for tissue organization and serve as hubs governing cell spatial arrangement within the organism.
View Article and Find Full Text PDFPhys Rev Lett
December 2024
Xi'an Jiaotong University, School of Microelectronics & State Key Laboratory for Mechanical Behavior of Materials, Xi'an 710049, China.
The bismuth monolayer has recently been experimentally identified as a novel platform for the investigation of two-dimensional single-element ferroelectric system. Here, we model the potential energy surface of a bismuth monolayer by employing a message-passing neural network and achieve an error smaller than 1.2 meV per atom.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!